Silver is the most famous bactericidal element known from ancient times. Its antibacterial and antifungal effects are typically associated with the Ag ionization and concentration of Ag ions in a bacterial culture. Herein we thoroughly studied the influence of surface topography and roughness on the rate of Ag ion release. We considered two types of biocompatible and bioactive TiCaPCON-Ag films with 1 and 2 at. % of Ag and nine types of Ti surfaces with an average roughness varying in the range from 5.4 × 10 to 12.6 μm and different topographic features obtained through polishing, sandblasting, laser treatment, and pulsed electrospark deposition. It is demonstrated that the Ag ion release rates do not depend on the Ag content in the films as the main parameter, and it is other factors, such as the state of Ag agglomeration, surface topography and roughness, as well as kinetics of surface oxidation, that play a critical role. The obtained results clearly show a synergistic effect of the Ag content in the film and surface topography and roughness on Ag ion release. By changing the surface topographical features at a constant content of bactericidal element, we showed that the Ag ion release can be either accelerated by 2.5 times or almost completely suppressed. Despite low Ag ion concentration in physiological solution (<40 ppb), samples with specially fabricated surface reliefs (flakes or holes) showed a pronounced antibacterial effect already after 3 h of immersion in E. coli bacterial culture. Thus, our results open up new possibilities for the production of cost-effective, scalable, and biologically safe implants with pronounced antibacterial characteristics for future applications in the orthopedic field.
Microbial synthesis of nanoparticles has a potential to develop simple, costeffective and eco-friendly methods for production of technologically important materials. In this study, for the first time a novelactinomycete strain Streptomyces glaucus71 MD isolated from a soy rhizosphere in Georgiais for the first time extensively characterized and utilized for the synthesis of silver nanoparticles. Scanning Electron Microscope (SEM) allowed observing extracellular synthesis of nanoparticles, which has many advantages from the point of view of applications. Production of silver nanoparticles proceeded extracellularlywith the participation of another microorganism, bluegreen microalgae Spirulinaplatensis (S. platensis). In this study it is shown that the production rate of the nanoparticles depends not only on the initial concentration of AgNO 3 but also varies with time in a nonmonotonic way. SEM study of silver nanoparticles remaining on the surface of microalgae revealed that after 1 day of exposure to 1 mM AgNO 3 nanoparticles were arranged as long aggregates along S. platensiscells strongly damaged by silver ions. However, after 5 days of exposure to silver S. platensiscells looked completely recovered and the nanoparticles were distributed more uniformly on the surface of the cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.