We describe the design principles and fabrication of Ag honeycomb mesh as a transparent conductive electrode using a polystyrene (PS) sphere template. Monolayers of PS spheres with different diameters, such as 600 nm, 3 μm, and 10 μm, are studied as templates to form Ag mesh with high transmittance. Since the parasitic Ag islands degrade the transmittance, both heat pretreatment and wet etching are used to control the area covered by parasitic Ag islands. The trade-off between transmittance and conductivity forces us to use larger diameter PS spheres. Ten-micron PS spheres are chosen as the template for the PS sphere monolayer, and heat pretreatment and Ag wet etching are used to demonstrate that the Ag honeycomb mesh transparent electrodes have high performance. The transmittance and the sheet resistance are 83% and 20 Ω/sq, which are comparable to commercial ITO electrodes.
Ag mesh-indium tin oxide (ITO) hybrid transparent conductive films were fabricated and evaluated for use in film heaters. PS monolayer templates were prepared using highly mono-dispersed PS spheres (11.2 μm) obtained by a filtering process with micro-sieves. At first, three Ag meshes with different sheet resistances (20, 100, and 300 Ω sq(-1)) and transmittances (70, 73, and 76%) were evaluated for film heaters in terms of voltage and long-term stability. Subsequently, in an effort to obtain better transmittance, Ag mesh-ITO hybrid heaters were fabricated utilizing finite ITO depositions. At the optimised ITO thickness (15 nm), the sheet resistance and the transmittance were 300 Ω sq(-1) and 88%, respectively, which indicates that this material is a good potential candidate for an efficient defroster in vehicles.
BackgroundClonorchis sinensis causes a major food-borne helminthic infection. This species locates in mammalian hepatobiliary ducts, where oxidative stressors and hydrophobic substances are profuse. To adapt to the hostile micromilieu and to ensure its long-term survival, the parasite continuously produces a diverse repertoire of antioxidant enzymes including several species of glutathione transferases (GSTs). Helminth GSTs play pertinent roles during sequestration of harmful xenobiotics since most helminths lack the cytochrome P-450 detoxifying enzyme.MethodsWe isolated and analyzed the biochemical properties of two omega-class GSTs of C. sinensis (CsGSTo1 and CsGSTo2). We observed spatiotemporal expression patterns in accordance with the maturation of the worm’s reproductive system. Possible biological protective roles of CsGSTos in these organs under oxidative stress were investigated.ResultsThe full-length cDNAs of CsGSTo1 and 2 constituted 965 bp and 1,061 bp with open reading frames of 737 bp (246 amino acids) and 669 bp (223 amino acids). They harbored characteristic N-terminal thioredoxin-like and C-terminal α-helical domains. A cysteine residue, which constituted omega-class specific active site, and the glutathione-binding amino acids, were recognized in appropriate positions. They shared 44 % sequence identity with each other and 14.8–44.8 % with orthologues/homologues from other organisms. Bacterially expressed recombinant proteins (rCsGSTo1 and 2) exhibited dehydroascorbate reductase (DHAR) and thioltransferase activities. DHAR activity was higher than thioltransferase activity. They showed weak canonical GST activity toward 1-chloro-2,4-dinitrobenzene. S-hexylglutathione potently and competitively inhibited the active-site at nanomolar concentrations (0.63 and 0.58 nM for rCsGSTo1 and 2). Interestingly, rCsGSTos exhibited high enzyme activity toward mu- and theta-class GST specific substrate, 4-nitrobenzyl chloride. Expression of CsGSTo transcripts and proteins increased beginning in 2-week-old juveniles and reached their highest levels in 4-week-old adults. The proteins were mainly expressed in the elements of the reproductive system, such as vitelline follicles, testes, seminal receptacle, sperm and eggs. Oxidative stressors induced upregulated expression of CsGSTos in these organs. Regardless of oxidative stresses, CsGSTos continued to be highly expressed in eggs. CsGSTo1 or 2 overexpressing bacteria demonstrated high resistance under oxidative killing.ConclusionsCsGSTos might be critically involved in protection of the reproductive system during maturation of C. sinensis worms and in response to oxidative conditions, thereby contributing to maintenance of parasite fecundity.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1622-2) contains supplementary material, which is available to authorized users.
The authors have fabricated Au nanodot arrays using anodic aluminum oxide (AAO). Two types of AAO, namely, hexagonal and matrix pores, were used as a template for Au deposition. Au nanodots with a controlled size between 20 and 80 nm were obtained by changing the pore size in the AAO template. AAO templates of 200 nm thick were fabricated using two-step anodization. Al films of 150 nm thick grown on Si (100) substrates were indented using the nanoimprint method prior to the anodization for the matrix array of AAO. In addition, for smaller size pores, neutral beam etching was used to remove the barrier layer. The pore size was extracted from the image analysis to the images obtained by field emission secondary electron microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.