The transient evolution of protoporphyrin IX (PPIX) and hemin following the Soret band excitation was measured in the 410-600 nm spectral region with sub-picosecond time resolution. In PPIX the relaxation pathway was characterized in the femto- and picosecond time scale by two processes with time constants of 350 fs and ~6 ps, describing the evolution of the system through internal Q(y) → Q(x) conversion and vibrational relaxation and cooling in the Q(x) state. The lifetime of the Q(x) state was found to be 10.4 ns by time resolved fluorescence measurements. In hemin, the ground state is completely recovered in tens of picoseconds through pathways involving CT and (d,d) states. The experimentally observed vibrational dynamics is mainly due to "hot" ground state transitions.
Structural calculations by means of the density functional method have been performed on tetraoxaporphyrin dication and on isoelectronic diprotonated porphyrin as well as on the sulfur and carbon analogues of porphyrin. A detailed study of the stable conformations of these compounds is reported starting with the most symmetrical conformations and lowering the symmetry along the vibrational coordinates with imaginary frequency. The calculated geometries are related to experimental structures available from X-ray diffraction studies. The Raman spectra of tetraoxaporphyrin dication exciting with micro-Raman instrumentation at 785 nm and of diprotonated porphyrin in near-resonance conditions with the Soret band have been measured. The correlation between frequencies calculated with the DF/B3-LYP/cc-pVDZ procedure for porphyrin, diprotonated porphyrin, and tetraoxaporphyrin dication has allowed for making a vibrational assignment for the latter two systems in excellent agreement with experiment using a single frequency scale factor.
The dependence of multiple ionization cross section on the orientation of the molecular axis in collisions of fast ions with diatomic and linear triatomic molecules is studied theoretically. The ionization process is described within the statistical energy deposition model. The energy transferred in the collision is calculated within the unitary-convolution approximation by Schiwietz and Grande. The impact-velocity dependence of the orientation effect as well as its dependence on the molecular properties are studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.