Neptune-sized extrasolar planets that orbit relatively close to their host stars-often called "hot Neptunes"-are common within the known population of exoplanets and planetary candidates. Similar to our own Uranus and Neptune, inefficient accretion of nebular gas is expected produce hot Neptunes whose masses are dominated by elements heavier than hydrogen and helium. At high atmospheric metallicities of 10-10,000 times solar, hot Neptunes will exhibit an interesting continuum of atmospheric compositions, ranging from more Neptune-like, H 2 -dominated atmospheres to more Venus-like, CO 2 -dominated atmospheres. We explore the predicted equilibrium and disequilibrium chemistry of generic hot Neptunes and find that the atmospheric composition varies strongly as a function of temperature and bulk atmospheric properties such as metallicity and the C/O ratio. Relatively exotic H 2 O, CO, CO 2 , and even O 2 -dominated atmospheres are possible for hot Neptunes. We apply our models to the case of GJ 436b, where we find that a CO-rich, CH 4 -poor atmosphere can be a natural consequence of a very high atmospheric metallicity. From comparisons of our results with Spitzer eclipse data for GJ 436b, we conclude that although the spectral fit from the high-metallicity forward models is not quite as good as the best fit obtained from pure retrieval methods, the atmospheric composition predicted by these forward models is more physically and chemically plausible in terms of the relative abundance of major constituents. High-metallicity atmospheres (orders of magnitude in excess of solar) should therefore be considered as a possibility for GJ 436b and other hot Neptunes.
We discuss our current understanding of the interior structure and thermal evolution of giant planets. This includes the gas giants, such as Jupiter and Saturn, that are primarily composed of hydrogen and helium, as well as the "ice giants," such as Uranus and Neptune, which are primarily composed of elements heavier than H/He. The effect of different hydrogen equations of state (including new first-principles computations) on Jupiter's core mass and heavy element distribution is detailed. This variety of the hydrogen equations of state translate into an uncertainty in Jupiter's core mass of 18M ⊕ . For Uranus and Neptune we find deep envelope metallicities up to 0.95, perhaps indicating the existence of an eroded core, as also supported by their low luminosity. We discuss the results of simple cooling models of our solar system's planets, and show that more complex thermal evolution models may be necessary to understand their cooling history. We review how measurements of the masses and radii of the nearly 50 transiting extrasolar giant planets are changing our understanding of giant planets. In particular a fraction of these planets appear to be larger than can be accommodated by standard models of planetary contraction. We review the proposed explanations for the radii of these planets. We also discuss very young giant planets, which are being directly imaged with ground-and space-based telescopes.Keywords giant planet interiors · exoplanets ⋆ Both authors contributed equally to this work.
Since the Voyager fly-bys of Uranus and Neptune, improved gravity field data have been derived from long-term observations of the planets' satellite motions, and modified shape and solid-body rotation periods were suggested. A faster rotation period (−40min) for Uranus and a slower rotation period (+1h20) of Neptune compared to the Voyager data were found to minimize the dynamical heights and wind speeds. We apply the improved gravity data, the modified shape and rotation data, and the physical LM-R equation of state to compute adiabatic three-layer structure models, where rocks are confined to the core, and homogeneous thermal evolution models of Uranus and Neptune. We present the full range of structure models for both the Voyager and the modified shape and rotation data. In contrast to previous studies based solely on the Voyager data or on empirical EOS, we find that Uranus and Neptune may differ to an observationally significant level in their atmospheric heavy element mass fraction Z 1 and nondimensional moment of inertia, λ. For Uranus, we find Z 1 ≤ 8% and λ = 0.2224(1), while for Neptune Z 1 ≤ 65% and λ = 0.2555(2) when applying the modified shape and rotation data, while for the unmodified data we compute Z 1 ≤ 17% and λ = 0.230(1) for Uranus and Z 1 ≤ 54% and λ = 0.2410(8) for Neptune. In each of these cases, solar metallicity models (Z 1 = 0.015) are still possible. The cooling times obtained for each planet are similar to recent calculations with the Voyager rotation periods: Neptune's luminosity can be explained by assuming an adiabatic interior while Uranus cools far too slowly. More accurate determinations of these planets' gravity fields, shapes, rotation periods, atmospheric heavy element abundances, and intrinsic luminosities are essential for improving our understanding of the internal structure and evolution of icy planets.
Context. The discovery of CoRoT-7b, a planet of a radius 1.68 ± 0.09 R ⊕ , a mass 4.8 ± 0.8 M ⊕ , and an orbital period of 0.854 days demonstrates that small planets can orbit extremely close to their star. Aims. Several questions arise concerning this planet, in particular concerning its possible composition, and fate. Methods. We use knowledge of hot Jupiters, mass loss estimates and models for the interior structure and evolution of planets to understand its composition, structure and evolution. Results. The inferred mass and radius of CoRoT-7b are consistent with a rocky planet that would be significantly depleted in iron relative to the Earth. However, a one sigma increase in mass (5.6 M ⊕ ) and one sigma decrease in size (1.59 R ⊕ ) would make the planet compatible with an Earth-like composition (33% iron, 67% silicates). Alternatively, it is possible that CoRoT-7b contains a significant amount of volatiles. For a planet made of an Earth-like interior and an outer volatile-rich vapour envelope, an equally good fit to the measured mass and radius is found for a mass of the vapour envelope equal to 3% (and up to 10% at most) of the planetary mass. Because of its intense irradiation and small size, we determine that the planet cannot possess an envelope of hydrogen and helium of more than 1/10 000 of its total mass. We show that a relatively significant mass loss ∼10 11 g s −1 is to be expected and that it should prevail independently of the planet's composition. This is because to first order, the hydrodynamical escape rate is independent of the mean molecular mass of the atmosphere, and because given the intense irradiation, even a bare rocky planet would be expected to possess an equilibrium vapour atmosphere thick enough to capture stellar UV photons. Clearly, this escape rate rules out the possibility that a hydrogen-helium envelope is present, as it would escape in only ∼1 Ma. A water vapour atmosphere would escape in ∼1 Ga, indicating that this is a plausible scenario. The origin of CoRoT-7b cannot be inferred from the present observations: It may have always had a rocky composition; it may be the remnant of a Uranus-like ice giant, or a gas giant with a small core that has been stripped of its gaseous envelope. Conclusions. With high enough sensitivity, spectroscopic transit observations of CoRoT-7 should constrain the composition of the evaporating flow and therefore allow us to distinguish between a rocky planet and a volatile-rich vapour planet. In addition, the theoretical tools developed in this study are applicable to any short-period transiting super-Earth and will be important to understanding their origins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.