We first present a simple yet versatile strategy for the functionalization of polymer nanotubes in a controlled fashion. Carboxylic-acid-functionalized polypyrrole (CPPy) nanotubes were fabricated by using cylindrical micelle templates in a water-in-oil emulsion system, and the functional carboxyl groups were effectively incorporated into the polymer backbone during the polymerization by using pyrrole-3-carboxylic acid (P3CA) as a co-monomer without a sophisticated functionalization process. It was noteworthy that the chemical functionality of CPPy nanotubes was readily controlled in both qualitative and quantitative aspects. On the basis of the controlled functionality of CPPy nanotubes, a field-effect transistor (FET) sensor platform was constructed to detect specific biological entities by using a buffer solution as a liquid-ion gate. The CPPy nanotubes were covalently immobilized onto the microelectrode substrate to make a good electrical contact with the metal electrodes, and thrombin aptamers were bonded to the nanotube surface via covalent linkages as the molecular recognition element. The selective recognition ability of thrombin aptamers combined with the charge transport property of CPPy nanotubes enabled the direct and label-free electrical detection of thrombin proteins. Upon exposure to thrombin, the CPPy nanotube FET sensors showed a decrease in current flow, which was probably attributed to the dipole-dipole or dipole-charge interaction between thrombin proteins and the aptamer-conjugated polymer chains. Importantly, the sensor response was tuned by adjusting the chemical functionality of CPPy nanotubes. The efficacy of CPPy nanotube FET sensors was also demonstrated in human blood serum; this suggests that they may be used for practical diagnosis applications after further optimization.
We describe the simple bioconjugation strategy in combination of periodate chemistry and unnatural amino acid incorporation. The residue specific incorporation of 3,4-dihydroxy-l-phenylalanine can alter the properties of protein to conjugate into the polymers. The homogeneously modified protein will yield quinone residues that are covalently conjugated to nucleophilic groups of the amino polysaccharide. This novel approach holds great promise for widespread use to prepare protein conjugates and synthetic biology applications.
Recombinant tyrosinase from Streptomyces avermitilis MA4680, MelC2 (gi:499291317), was heterologously expressed in Escherichia coli BL21 (DE3). The expression level of active MelC2 was increased by the codon-optimized MelC1 caddie protein (KP198295.1). By performing saturation mutagenesis of the Y91 residue of MelC1, it was found that aromatic residues such as Y, F, and W at the 91st position help produce a correctly folded conformation of MelC2. The recombinant MelC2 was utilized as a biocatalyst to convert trans-resveratrol into piceatannol. In order to improve the product yield through suppression of the formation of melanin, a by-product, an increase in the ratio of monooxygenation (k 1) to dioxygenation (k 2) of MelC2 is desirable. This was achieved by a combination of protein engineering and regeneration of NADH with glucose dehydrogenase (GDH). Saturation mutagenesis was performed at 15 residues within 8-Å radius from copper ions of MelC2. A total of 2760 mutants were examined (99.7 % probability for NNK codon) and I41Y, a mutant, was screened. The ratio of k 1 to k 2 of the mutant increased sevenfold on tyrosine and fivefold on resveratrol, when compared to wild-type MelC2. As a result, the overall product yield from 500 μM resveratrol in 50-mL reaction was 15.4 % (77.4 μM piceatannol), 1.7 times higher than wild type. When I41Y was incorporated with the NADH regeneration system, the total product yield was 58.0 %, an eightfold increase (290.2 μM of piceatannol).
Regiospecific 3'-hydroxylation reaction of daidzein was performed with CYP105D7 from Streptomyces avermitilis MA4680 expressed in Escherichia coli. The apparent K(m) and k(cat) values of CYP105D7 for daidzein were 21.83 +/- 6.3 microM and 15.01 +/- 0.6 min(-1) in the presence of 1 microM of CYP105D7, putidaredoxin (CamB) and putidaredoxin reductase (CamA), respectively. When CYP105D7 was expressed in S. avermitilis MA4680, its cytochrome P450 activity was confirmed by the CO-difference spectra at 450 nm using the whole cell extract. When the whole-cell reaction for the 3'-hydroxylation reaction of daidzein was carried out with 100 microM of daidzein in 100 mM of phosphate buffer (pH 7.5), the recombinant S. avermitilis grown in R2YE media overexpressing CYP105D7 and ferredoxin FdxH (SAV7470) showed a 3.6-fold higher conversion yield (24%) than the corresponding wild type cell (6.7%). In a 7 L (working volume 3 L) jar fermentor, the recombinants S. avermitilis grown in R2YE media produced 112.5 mg of 7,3',4'-trihydroxyisoflavone (i.e., 29.5% conversion yield) from 381 mg of daidzein in 15 h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.