Mountains contribute disproportionately to the terrestrial biodiversity of Earth, especially in the tropics, where they host hotspots of extraordinary and puzzling richness. With about 25% of all land area, mountain regions are home to more than 85% of the world’s species of amphibians, birds, and mammals, many entirely restricted to mountains. Biodiversity varies markedly among these regions. Together with the extreme species richness of some tropical mountains, this variation has proven challenging to explain under traditional climatic hypotheses. However, the complex climatic characteristics of rugged mountain regions differ fundamentally from those of lowland regions, likely playing a key role in generating and maintaining diversity. With ongoing global changes in climate and land use, the role of mountains as refugia for biodiversity may well come under threat.
The processes causing the latitudinal gradient in species richness remain elusive. Ecological theories for the origin of biodiversity gradients, such as competitive exclusion, neutral dynamics, and environmental filtering, make predictions for how functional diversity should vary at the alpha (within local assemblages), beta (among assemblages), and gamma (regional pool) scales. We test these predictions by quantifying hypervolumes constructed from functional traits representing major axes of plant strategy variation (specific leaf area, plant height, and seed mass) in tree assemblages spanning the temperate and tropical New World. Alpha-scale trait volume decreases with absolute latitude and is often lower than sampling expectation, consistent with environmental filtering theory. Beta-scale overlap decays with geographic distance fastest in the temperate zone, again consistent with environmental filtering theory. In contrast, gamma-scale trait space shows a hump-shaped relationship with absolute latitude, consistent with no theory. Furthermore, the overall temperate trait hypervolume was larger than the overall tropical hypervolume, indicating that the temperate zone permits a wider range of trait combinations or that niche packing is stronger in the tropical zone. Although there are limitations in the data, our analyses suggest that multiple processes have shaped trait diversity in trees, reflecting no consistent support for any one theory. S pecies richness increases toward the equator (1, 2) in major clades of both extant and extinct species of plants and animals (3, 4). The generality of the pattern hints at a correspondingly general explanation, yet the latitudinal gradient in species richness remains one of ecology's greatest unsolved puzzles. Long-running debates over the causes of the latitudinal gradient of species richness have focused on ecological, evolutionary, and geographic explanations (5-10). Although there has been some progress (11), it is also increasingly clear that there are numerous obstacles to understanding the primary drivers of the latitudinal gradient, including an ever-increasing number of hypotheses (12, 13), challenges in clearly separating their interdependencies (14, 15), and difficulties in rigorously falsifying their assumptions and predictions (16).More powerful tests of biodiversity theories need to move beyond species richness and instead explicitly focus on the mechanisms generating the gradient, by recasting the theories in terms of other measures of diversity, such as functional diversity (17-19). For example, explanations that assume species richness is limited by resource availability have often focused on the strength of species interactions, life history differences, and environmental constraints on how species pack into niche space (20). Evolutionary hypotheses have focused on differences in diversification rates, as well as the influence of species interactions on diversification rates (9). These interaction-based explanations implicitly refer to the degree of ecol...
Abstract1. There is an urgent need for large-scale botanical data to improve our understanding of community assembly, coexistence, biogeography, evolution, and many other fundamental biological processes. Understanding these processes is critical for predicting and handling human-biodiversity interactions and global change dynamics such as food and energy security, ecosystem services, climate change, and species invasions.2. The Botanical Information and Ecology Network (BIEN) database comprises an unprecedented wealth of cleaned and standardised botanical data, containing roughly 81 million occurrence records from c. 375,000 species, c. 915,000 trait observations across 28 traits from c. 93,000 species, and co-occurrence records from 110,000 ecological plots globally, as well as 100,000 range maps and 100 replicated phylogenies (each containing 81,274 species) for New World species. Here, we describe an r package that provides easy access to these data. K E Y W O R D S
A key feature of life’s diversity is that some species are common but many more are rare. Nonetheless, at global scales, we do not know what fraction of biodiversity consists of rare species. Here, we present the largest compilation of global plant diversity to quantify the fraction of Earth’s plant biodiversity that are rare. A large fraction, ~36.5% of Earth’s ~435,000 plant species, are exceedingly rare. Sampling biases and prominent models, such as neutral theory and the k-niche model, cannot account for the observed prevalence of rarity. Our results indicate that (i) climatically more stable regions have harbored rare species and hence a large fraction of Earth’s plant species via reduced extinction risk but that (ii) climate change and human land use are now disproportionately impacting rare species. Estimates of global species abundance distributions have important implications for risk assessments and conservation planning in this era of rapid global change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.