Peanut is a major oilseed crop worldwide. In the Brazilian peanut production, silvering thrips and red necked peanut worm are the most threatening pests. Resistant varieties are considered an alternative to pest control. Many wild diploid Arachis species have shown resistance to these pests, and these can be used in peanut breeding by obtaining hybrid of A and B genomes and subsequent polyploidization with colchicine, resulting in an AABB amphidiploid. This amphidiploid can be crossed with cultivated peanut (AABB) to provide genes of interest to the cultivar. In this study, the sterile diploid hybrids from A. magna V 13751 and A. kempff-mercadoi V 13250 were treated with colchicine for polyploidization, and the amphidiploids were crossed with A. hypogaea cv. IAC OL 4 to initiate the introgression of the wild genes into the cultivated peanut. The confirmation of the hybridity of the progenies was obtained by: (1) reproductive characterization through viability of pollen, (2) molecular characterization using microsatellite markers and (3) morphological characterization using 61 morphological traits with principal component analysis. The diploid hybrid individual was polyploidized, generating the amphidiploid An 13 (A. magna V 13751 x A. kempff-mercadoi V 13250)4x. Four F1 hybrid plants were obtained from IAC OL 4 × An 13, and 51 F2 seeds were obtained from these F1 plants. Using reproductive, molecular and morphological characterizations, it was possible to distinguish hybrid plants from selfed plants. In the cross between A. hypogaea and the amphidiploid, as the two parents are polyploid, the hybrid progeny and selves had the viability of the pollen grains as high as the parents. This fact turns the use of reproductive characteristics impossible for discriminating, in this case, the hybrid individuals from selfing. The hybrids between A. hypogaea and An 13 will be used in breeding programs seeking pest resistance, being subjected to successive backcrosses until recovering all traits of interest of A. hypogaea, keeping the pest resistance.
Paspalum is an important genus of grasses, and some species are used for forage in the warmer regions of the world. Efforts to develop improved cultivars often require intra‐ and interspecific hybridization, but asynchronous flowering sometimes prevents hybridization between parental species. One method of circumventing this problem is to store pollen using cryopreservation so pollen will be available to pollinate the female parent when it flowers. Bahiagrass (Paspalum notatum Flügge) was used to determine if Paspalum pollen can be preserved using long‐term cold storage. Pollen was dehydrated with LiCl, MgCl2, NaOH, and silica gel for 30, 60, and 120 min. Both dehydrated and nondehydrated pollen were stored at 4, −20, and −196°C for 10, 60, 120, and 180 d. After thawing, pollen stainability and in vivo germination were used to assess viability. Stainability of fresh pollen was 73.3%, and for treated and stored pollen, it ranged from 25.3 to 71.3%. Storage at −20 and −196°C was superior to storage at 4°C. Pollen dehydrated with LiCl for 30 min stored best at −196°C; pollen dehydrated for 120 min with silica gel and for 30 and 60 min with MgCl2 stored best at −20°C. All samples regardless of treatment, storage temperature, or length of storage had viable pollen. These findings demonstrate that bahiagrass pollen can be stored in long‐term cold conditions, and this procedure can be used to circumvent problems associated with asynchronous flowering between parental species used in wide hybridization programs.
Peanut (Arachis hypogaea L.) is a tetraploid species with an A and B genome, while the majority of wild Arachis species are diploid with distinct genomes. In pre-breeding programs, one way to introgress interesting wild genes into peanut is by producing amphidiploids. This study aimed at the hybridization between distinct amphidiploids and their characterization, to combine high crossability with peanut, observed in some amphidiploids, with high pest and disease resistances observed in others. These new hybrids were called complex hybrids. Four amphidiploids previously obtained were crossed at four different combinations, and the derived complex hybrids were crossed with four peanut cultivars. Morphological, reproductive, chromosome complement, molecular markers for hybrid identification, phytopatological, and entomological characterizations were performed on the complex hybrids. All cross combinations resulted in complex hybrids. One complete complement of each diploid progenitor was confirmed in each hybrid. Plants of six distinct hybrid combinations were obtained between the complex hybrids and peanut. Based on morphological characterization, differences among progenies from distinct cross combinations were observed. Complex hybrids were considered more resistant to all diseases and pests than peanut cultivars. The simultaneous introgression of genes from four wild Arachis species into peanut was possible through the development of complex hybrids.
In Brazil, the thrips (Enneothrips flavens Moulton) and rednecked peanutworm (Stegasta bosquella Chambers) are considered key pests for the peanut crop. Wild species show resistance to both of these pests, and can be used in breeding programs. The production of the sterile interspecific hybrids is necessary, which could be colchicine treated to get a synthetic amphidiploid with the same or similar genomic configuration of cultivated peanut. In this context, this study proposed the hybridization of wild pest-resistant species in 18 distinct combinations, obtaining the interspecific hybrids of Arachis and completing their characterization by (i) the reproductive characterization through pollen stainability with 2% acetocarmine (AC) solution with glycerin and 0.25% tetrazolium
The genus Paspalum belongs to the family Poaceae and has several species that are native to Brazil. The Paspalum Germplasm Bank (GB) of the Brazilian Agricultural Research Corporation comprises approximately 450 accessions from 50 species. Among these accessions, Paspalum atratum (BGP 308) has economic potential for forage purposes. However, the endophytic and rhizospheric microbial communities within this accession and their ability to promote plant growth remain unknown. The present study aimed to isolate the endophytic and rhizospheric bacteria associated with P. atratum and to assess their potential for plant growth improvement, so-called plant growth-promoting bacteria (PGPB). For the in vitro tests, the ability of nitrogen-fixing bacteria (NFB), phosphate solubilization (PS) and indoleacetic acid (IAA) production were evaluated. A total of 116 endophytic and rhizosphere bacteria were obtained from the isolation. In the in vitro tests, 43 (37.00%) of these isolates showed positive NFB, PS, and IAA results. These isolates were identified by 16S rDNA sequencing. The phosphate solubilization index (PSI) ranged from 2 to 3.61, all 43 strains performed biological nitrogen fixation and the IAA production ranged from 12.85 to 431.41 μg ml−1. Eight of these 43 isolates were evaluated in vivo in a greenhouse using P. atratum caryopsis. The pots were filled with soil prepared with three different phosphate sources and one control without phosphate. After growth, the plants were submitted to morphological, bromatological and chemical determination. Data were analyzed using analysis of variance (ANOVA) and principal component analysis (PCA). In the in vivo test, treatments 105 (Pseudomonas sp.) and 458 (Pseudomonas sp.) were the most significant for the crystalline phosphate source, 109 (Bacillus sp.) for the sedimentary phosphate source and, as for the soluble phosphate source most treatments that received bacterial isolates had higher phosphorus content in the dry matter than the uninoculated soluble phosphate control. The 105FCR (crystalline phosphate + Pseudomonas sp.), 109FSE (sedimentary phosphate + Bacillus sp.), and 110 FSE (sedimentary phosphate + Enterobacter sp.) treatments showed the best results for plant growth promotion. This work made it possible to determine the bacterial community associated with P. atratum (BGP308) and to obtain new potential plant growth-promoting strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.