The ultrasound-mediated transient materials enable the management of biodegradation processes for implantable electronics.
To prevent surgical site infection (SSI), which significantly increases the rate morbidity and mortality, eliminating microorganisms is prominent. Antimicrobial resistance is identified as a global health challenge. This work proposes a new strategy to eliminate microorganisms of deep tissue through electrical stimulation with an ultrasound (US)‐driven implantable, biodegradable, and vibrant triboelectric nanogenerator (IBV‐TENG). After a programmed lifetime, the IBV‐TENG can be eliminated by provoking the on‐demand device dissolution by controlling US intensity with no surgical removal of the device from the body. A voltage of ≈4 V and current of ≈22 µA generated from IBV‐TENG under ultrasound in vitro, confirming inactivating ≈100% of Staphylococcus aureus and ≈99% of Escherichia coli . Furthermore, ex vivo results show that IBV‐TENG implanted under porcine tissue successfully inactivates bacteria. This antibacterial technology is expected to be a countermeasure strategy against SSIs, increasing life expectancy and healthcare quality by preventing microorganisms of deep tissue.
A bioadhesive triboelectric nanogenerator (BA‐TENG), as a first‐aid rescue for instant and robust wound sealing and ultrasound‐driven accelerated wound healing, is designed. This BA‐TENG is fabricated with biocompatible materials, and integrates a flexible TENG as the top layer and bioadhesive as the bottom layer, resulting in effective electricity supply and strong sutureless sealing capability on wet tissues. When driven by ultrasound, the BA‐TENG can produce a stable voltage of 1.50 V and current of 24.20 µA underwater. The ex vivo porcine colon organ models show that the BA‐TENG seals defects instantly (≈5 s) with high interfacial toughness (≈150 J m−2), while the rat bleeding liver incision model confirms that the BA‐TENG performs rapid wound closure and hemostasis, reducing the blood loss by about 82%. When applied in living rats, the BA‐TENG not only seals skin injuries immediately but also produces a strong electric field (E‐field) of about 0.86 kV m−1 stimulated by ultrasound to accelerate skin wound healing significantly. The in vitro studies confirm that these effects are attributed to the E‐field‐accelerated cell migration and proliferation. In addition, these TENG adhesives can be applied to not only wound treatment, nerve stimulation and regeneration, and charging batteries in implanted devices.
Droplet evaporation on porous materials is a complex dynamic that occurs with spontaneous liquid imbibition through pores by capillary action. Here, we explore water dynamics on a porous fabric substrate with in-situ observations of X-ray and optical imaging techniques. We show how spreading and wicking lead to water imbibition through a porous substrate, enhancing the wetted surface area and consequently promoting evaporation. These sequential dynamics offer a framework to understand the alterations in the evaporation due to porosity for the particular case of fabric materials and a clue of how face masks interact with respiratory droplets.
In the current era of busy and eventful daily routines, the need for self-driven, robust, and low maintenance healthcare systems emerges significantly more than in earlier times. The nanogenerator (NG) technology provides a new pathway by utilizing nanostructured and eco-friendly materials toward biomedical systems by harvesting biomechanical energy. Triboelectric NGs (TENGs) have been well-developed to cater all these matters, giving self-powered, sustainable, environment-friendly, and low footprint devices. TENG comes up with great potential, therefore, we have summarized various dimensions of its applications in healthcare management, including prevention, detection, diagnosis, and treatment. We have reviewed different aspects of TENG healthcare systems that provide wearable, minimally invasive, and simple solutions while harvesting human motion as the power source. Here, recent advancements of triboelectric devices are compiled while discussing their significance, structure, capabilities, performance, and future potential. Meanwhile, the impact of TENG on protecting and treating various internal and external human organs, such as the heart, neural tissues, skin, and hair, has been described in detail. Moreover, TENG-based solutions have also included minimizing the effects of contemporary and lingering challenges such as air pollution and viral infectious diseases on human health. In the very end, we have concluded with the opportunities and possible solutions for anticipated challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.