5G is the next generation cellular network that aspires to achieve substantial improvement on quality of service, such as higher throughput and lower latency. Edge computing is an emerging technology that enables the evolution to 5G by bringing cloud capabilities near to the end users (or user equipment, UEs) in order to overcome the intrinsic problems of the traditional cloud, such as high latency and the lack of security. In this paper, we establish a taxonomy of edge computing in 5G, which gives an overview of existing state-of-the-art solutions of edge computing in 5G on the basis of objectives, computational platforms, attributes, 5G functions, performance measures, and roles. We also present other important aspects, including the key requirements for its successful deployment in 5G and the applications of edge computing in 5G. Then, we explore, highlight, and categorize recent advancements in edge computing for 5G. By doing so, we reveal the salient features of different edge computing paradigms for 5G. Finally, open research issues are outlined.
Internet access for passengers travelling in aircrafts is thought to be one of the unresolved major challenges for ubiquitous Internet provision. Vast oceanic remote regions along the busy air routes of the world require low-cost, reliable, and high-speed Internet for the aircraft. Satellite links can provide Internet coverage in such remote areas; however, their services are still costly with low bandwidth and longer delays. Fortunately, the submarine optical cables deployed across the oceans pass along the same busy air routes. These cables can be utilized as high-speed Internet backbone for wireless Internet access to the aircraft. Dedicated ships stationed along these submarine optical fiber cables can be exploited to provide Internet, security, and navigation services to aircrafts and ships. A novel architecture for such a ground/sea-to-air access network is proposed. A complete solution, design, and analysis of the proposed technique are thoroughly discussed. In contrast to the traditional land mobile radio cellular systems, the high speed of the aircraft results in reduced available handover time margins. To address the challenges related to the high-speed mobility of aircraft, an analysis for the impact of various parameters on the performance of handovers is presented. Using the proposed analytical model, a mathematical relation for the handover margin with the velocity of aircraft, direction of the aircraft's motion, and propagation environment is derived on the basis of path-loss propagation model.
Maritime networks establish wireless multi-hop networks to provide wireless broadband service at sea, connecting various kinds of ships, maritime buoys, and beacons. The maritime networks possess two distinguishing characteristics highly affected by maneuver at sea-dynamic link quality and bandwidth constrained, and dynamic network topology-that warrant specific attention. Unlike land vehicles, maneuver at sea is affected by sea surface movement and wave occlusions, which can cause unstable environment with a high rate of link breakages caused by low link stability, as well as low and highly variable bandwidth. In spite of the need to achieve performance close to high-speed terrestrial wireless broadband service on land, there is only a perfunctory effort to investigate maritime networks. There is an urgent need to refresh the interest to investigate, as well as to further enhance, maritime networks. This paper presents a review of the limited research works of this topic, which revolve around the networking issues in the link, network, and upper layers, in the literature. The objective is to establish a foundation in order to motivate a new research interest in maritime networks. Open issues are also presented to foster new research initiatives in this burgeoning and exciting area. INDEX TERMS Maritime network, ship ad hoc network, wireless network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.