We present an accelerated SmartSpice model that can detect dynamic threshold voltage shift (ΔVth)‐related failure of an oxide thin‐film transistor (TFT)‐based gate driver. During gate driver operation, the alternating HIGH and LOW input signals repeatedly stress and relax the TFT components of the gate driver. Because oxide TFTs do not recover completely during the LOW input level, ΔVth cumulated during the HIGH input levels may result in failure of gate drivers. For correct failure analysis, a TFT model that can detect dynamic ΔVth is, therefore, needed to replace current TFT models, as they cannot account for dynamic ΔVth. The model presented herein works correctly with varying temperature and input signals of any shape.
The procedure to calibrate TCAD simulation data, based on both measurement data and the probability of occupation functions, is described . By using a density-of-states model and a band-to-band tunneling model in the Silvaco Atlas device simulator, insight into the TFTs and more accurate TCAD simulations can be obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.