In order to reduce the taxiing time of departing aircraft and reduce the fuel consumption and exhaust emissions of the aircraft, Shanghai Hongqiao Airport was taken as an example to study the control strategy for aircraft departure. In this paper, the influence of the number of departure aircraft on the runway utilization rate, the takeoff rate, and the departure rate of flight departures under the conditions of airport runway capacity constraints are studied. The influence of factors, such as the number of departure aircraft, the gate position of the aircraft, and the configuration of airport arrival and departure runways, on the aircraft taxiing time for departure is analyzed. Based on a multivariate linear regression equation, a time prediction model of aircraft departure taxiing time is established. The fuel consumption and pollutant emissions of aircraft are calculated. The experimental results show that, without reducing the utilization rate of the runway and the departure rate of flights, implementing a reasonable pushback number for control of departing aircraft during busy hours can reduce the departure taxiing time of aircraft by nearly 32%, effectively reducing the fuel consumption and pollutant emissions during taxiing on the airport surface.
This paper presented the design of a novel embedded bio-impedance analyzer based on digital auto-balancing bridge method. The hardware architecture of the system mainly consists of FPGA, ADC, DACs, USB controller and so on. Many DSP algorithms such as direct digital synthesis, digital phase sensitive demodulation, digital modulation and digital filter were implemented in FPGA to realize the auto balancing function of the bridge circuit. Simulation results show that the system has good performance from low frequency up to 10 MHz. For the advantages of cost-efficient and high stability, it is suitable for BIA application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.