The importance of Bacillus as feed additives in animals’ production is well recognized. Bacillus amyloliquefaciens and Bacillus pumilus are involved in promoting animal growth performance and immunological indicators. However, their precise roles in the modulation of microbiota and immune response in goat rumen and intestines have not been investigated. The aim of the current work was to evaluate the impacts of Bacillus amyloliquefaciens fsznc-06 and Bacillus pumilus fsznc-09 in the development of rumen and small intestinal and microbial communities in rumen and caecum of weanling Jintang black goats. Morphological alterations of rumen and small intestine (duodenum, jejunum, and ileum) were evaluated by histochemical staining, and ruminal contents and cecal feces were analyzed by 16S rRNA sequencing in an Illumina NovaSeq platform. Morphological analysis showed that feeding weanling goats with Bacillus amyloliquefaciens fsznc-06 or Bacillus pumilus fsznc-09 enhanced ruminal papilla and small intestinal villus growth. In addition, 16S rRNA sequencing analysis indicated that microbial richness and diversity (Shannon, Simpson, Chao1, and ACE) and the relative richness of multiple or potential beneficial bacteria were higher in weaned black goats fed on Bacillus amyloliquefaciens fsznc-06 or Bacillus pumilus fsznc-09, but that of multiple or potentially pathogenic bacteria were lower, as compared with the control group. Tax4Fun analysis predicting the functional profiling of microbial communities showed that microbial communities in rumen or caecum were highly influential on metabolism and organism systems after feeding weanling goats with Bacillus amyloliquefaciens fsznc-06 or Bacillus pumilus fsznc-09. It was suggested that Bacillus amyloliquefaciens fsznc-06 and Bacillus pumilus fsznc-09 might be an auspicious antibiotic alternative to improve black goat growth and health by changing rumen and gut microbiota positively.
An increasing number of Bacillus strains have been developed for use as animal feed additives. The aim of the current work was to evaluate the impacts of Bacillus pumilus fsznc‐09 in growth performance, organs development, blood constituents, genes expression of growth and immune in spleen and microbial communities in jejunum of weanling mice. The results showed that the body weight of mice in BP1 group increased significantly (p < 0.05) after feeding Bacillus pumilus fsznc‐09. Compared with control group, the feed conversion ratio of BP1 and BP2 groups showed 13.57% (p < 0.05) and 9.64% improvements, respectively. The lengths of large intestine, small intestine in BP1 group were significantly increased (p < 0.05). While compared with control group, the organ indexes in BP1 and BP2 group did not differ significantly. Compared with control group, the activities of serum total superoxide dismutase (T‐SOD), alkaline phosphatase (AKP), lysozyme (LZM) in BP1 group and T‐SOD, AKP in BP2 group were significantly increased (p < 0.05). Compared with control group, the expressions of ghrelin‐2 (Ghrl‐2) and insulin‐like growth factor 1 (Igf1) in BP1 group were significantly increased (p < 0.05). Compared with control group, the expressions of interleukin‐6 (IL‐6), nitric oxide synthase (INOS), tumour necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β) in BP1 group and the expressions of IL‐6, INOS, TNF‐α, IL‐1β and interferon alpha 11 (Ifna11) in BP2 group were slightly decreased. Moreover, compared with control group, the diversity of intestinal flora and relative abundance of potentially probiotics (e.g., Bifidobacterium, Bacillus) in BP1 and BP2 groups were increased. While compared with control group, the relative abundance of the potentially pathogenic bacterium (e.g., Staphylococcus) was reduced. The relative abundances of dominant species in BP1 (Lactobacillus johnsonii) and BP2 (Lactobacillus reuteri) groups were also higher than control group (Lactobacillus intestinalis). In conclusion, Bacillus pumilus fsznc‐09 might improve the growth performance and immunity of mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.