Adopting the emerging technology of printed electronics in manufacturing novel ultrathin flat panel displays attracts both academic and industrial interests because of the challenge in the device physics and the potential of reducing production costs. Here we produce all-solution processed polymer light-emitting diode displays by solution-depositing the cathode and utilizing a multifunctional buffer layer between the cathode and the organic layers. The use of ink-jetted conducting nanoparticles as the cathode yields high-resolution cathode patterns without any mechanical stress on the organic layers. The buffer layer, which offers the functions of solvent-proof electron injection and proper affinity, is fabricated by mixing the water/alcohol-soluble polymer and a curable epoxy adhesive. Our 1.5-inch polymer lightemitting diode displays are fabricated without any dead pixels or dead lines. The all-solution process eliminates the need for high vacuum for thermal evaporation of the cathode, which paves the way to industrial roll-to-roll manufacturing of flat panel displays.
Aligned organic nanowire arrays are grown in situ and patterned via dip coating. By optimizing the stick-slip motion, the solvent evaporation conditions, and the solution concentration, parallel organic nanowire arrays with tunable length and desirable density and periodicity are directly grown and aligned on the substrate. Organic FETs based on the organic nanowire array have been successfully fabricated with a mobility of 1 x 10(-4) cm(2) .V(-1).s(-1).
Organic nanowire (NW) transistor arrays with a mobility of as high as 1.26 cm(2)·V(-1)·S(-1) are fabricated by combining the dip-coating process to align the NW into arrays with the inkjet printing process to pattern the source/drain electrodes. A narrow gap of ~20 μm has been obtained by modifying the inkjet process. The all-solution process is proven to be a low-cost, high-yield, simple approach to fabricating high-performance organic NW transistor arrays over a large area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.