Background The 3D‐Transit electromagnet tracking system (Motilis Medica, SA, Lausanne, Switzerland) is an emerging tool for the ambulatory assessment of gastrointestinal (GI) transit and motility. Using this tool, we aimed to derive normative values for region‐specific colonic and GI transit times and to assess the influence of age, gender, and body mass index (BMI). Methods Regional and total colonic transit times (CTT), gastric emptying (GET), small intestinal (SITT), and whole gut (WGTT) transit times were extracted from 111 healthy volunteers from the United Kingdom and Denmark (58 female; median age: 40 years [range: 21‐88]). The effects of age, gender, and BMI were assessed using standard statistical methods. Key Results The ascending, transverse, descending, and rectosigmoid colon transit times accounted for 32%, 34%, 17%, and 17% of total CTT in females, and 33%, 25%, 14%, and 28% of total CTT in males. CTT and WGTT were seen to cluster at intervals separated by approximately 24 hours, providing further evidence of the non‐continuous nature of these measurements. Increasing age was associated with longer CTT (P = .021), WGTT (P < .001) ascending (P = .004), transverse (P < .001), and total right (P < .001) colon transit times, but shorter rectosigmoid (P = .004) transit time. Female gender was significantly associated with longer transverse (P = .049) and descending (P < .001) colon transit times, but shorter rectosigmoid (P < .001) transit time. Increasing BMI was significantly associated with shorter WGTT (P = .012). Conclusions and Inferences For the first time, normative reference values for region‐specific colonic transit have been presented. Age, gender, and BMI were seen to have an effect on transit times.
Background: Gastrointestinal (GI) symptoms are common in patients with diabetes mellitus (DM). The electromagnetic 3D-Transit system allows assessment of regional transit times and motility patterns throughout the GI tract. We aimed to compare GI transit times and detailed motility patterns of the colon in patients with DM and GI symptoms to those of healthy controls (HC). We further aimed to determine whether any abnormalities in motility were reversible by cholinergic stimulation. Methods: We compared 18 patients with DM with 20 HC by means of the 3D-Transit system. Patients were studied before and during oral administration of 60 mg pyridostigmine. Key results: Compared to HC, patients had prolonged gastric emptying (DM: 3.3 hours (interquartile range (IQR) 2.6-4.6); HC: 2.3 hours (IQR 1.7-2.7) (P < .01)), colonic transit time (DM: 52.6 hours (IQR 23.3-83.0); HC: 22.4 hours (IQR 18.9-43.6) (P = .02)), and whole gut transit time (DM: 69.4 hours (IQR 32.9-103.6); HC: 30.3 hours (IQR 25.2-49.9) (P < .01)). In addition, compared to HC, patients had prolonged transit time in the ascending colon (DM: 20.5 hours (IQR 11.0-44.0); HC: 8.0 hours (IQR 3.8-21.0) (P < .05)) and more slow retrograde movements in the colon (DM: 2 movements (IQR 1-4); HC: 1 movement (IQR 0-1) (P = .01)). In patients, pyridostigmine increased the number of bowel movements (P < .01) and reduced small intestine transit times (P < .05). Conclusions: Patients with DM and GI symptoms have longer than normal GI transit times. This is only partly reversible by pyridostigmine. The increased number of retrograde colonic movements in patients could potentially explain the abnormally long transit time in proximal colon.
Objective: Capsule-based methods for assessment of gastrointestinal (GI) motility have seen great improvements in recent decades. The most recent development is the electromagnetic Motilis 3D-Transit system (3D-Transit). The aim of this paper is to review and discuss the development and technical properties of magnetic tracking of GI motility.Approach: We performed a comprehensive literature review on magnetic tracking in GI research. Main results:The Motility Tracking System was the first capsule based magnetic system to be used in GI motility research. However, the potential of the system was hampered by its stationary and hospitalizing nature. This led to the development of the electromagnetic Motilis 3D-Transit system. The 3D-Transit system is a portable system that allows for assessment of both whole gut and regional transit times and contraction patterns in a fully ambulatory setting in the patients' home environment with only minor restrictions on movements. The spatiotemporal resolution of 3D-Transit allows assessment of segmental colonic transit times and permits an analysis of gastric and colonic movements with a degree of detail unrivalled by other ambulatory methods, such as the Wireless Motility Capsule. Recently, robust normative data on 3D-Transit have been published.Significance: This review provides a current perspective on the use of capsule-based magnetic tracking systems in GI research and how they represent a potentially valuable clinical resource for GI physicians and in GI research.
Background:The Motilis 3D-Transit system allows ambulatory description of transit patterns throughout the gastrointestinal tract and offers an alternative method for studying gastric motility. We aimed to establish normative values for gastric motility assessed with the method. Method:A total of 132 healthy volunteers ingested the 3D-Transit capsule for assessment of gastrointestinal transit times. Recordings from 125 subjects were used for definition of normative values. Forty-six subjects were studied on two consecutive days. Recordings were reanalyzed using newly developed software providing information on gastric emptying (GE) as well as contraction frequency and movement during gastric contractions. Results:The median GE time was 2.7 hours (range 0.1-21.2). In 89% of subjects, the capsule passed the pylorus within a postingestion period of 6 hours. The median frequency of gastric contractions was 3.1 per minute (range 2.6-3.8). The frequency was higher in women (3.2, range 2.7-3.8) than in men (3.0, range 2.6-3.5) and increased with age (0.004 per year) (P < .05). The median amplitudes were 35° (range 4-85) when based on rotation of the capsule and 11 mm (range 6-31) when based on capsule change in position. The rotation amplitude was higher in women and decreased with increasing BMI (P < .05). The position amplitude was also higher in women and increased with the amount of calories in the test meal, but decreased with increasing BMI and age (P < .05). Day-to-day variation (P > .05) was considerable while interrater variability was small. Conclusion and Inferences:We have established normative values for gastric motility assessed with the 3D-Transit system. K E Y W O R D S gastric motility, gastroenterology, gastrointestinal motility, neurogastroenterology S U PP O RTI N G I N FO R M ATI O N Additional supporting information may be found online in the Supporting Information section. How to cite this article: Sutter N, Klinge MW, Mark EB, et al.Normative values for gastric motility assessed with the 3D-transit electromagnetic tracking system. Neurogastroenterol
Conflict of Interest and Source of FundingVS is co-owner of Motilis Medica SA. VS contributed with technical information for the protocols for the Danish Ethics Committee and the Danish Medicines Agency. During the study he was solely involved when technical issues arose with the equipment. All other authors have no conflicts of interest to disclose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.