Abstract. Liver cancer is one of the most common malignant tumors worldwide. In order to enable the noninvasive detection of small liver tumors in mice, we present a parallel iterative shrinkage (PIS) algorithm for dual-modality tomography. It takes advantage of microcomputed tomography and multiview bioluminescence imaging, providing anatomical structure and bioluminescence intensity information to reconstruct the size and location of tumors. By incorporating prior knowledge of signal sparsity, we associate some mathematical strategies including specific smooth convex approximation, an iterative shrinkage operator, and affine subspace with the PIS method, which guarantees the accuracy, efficiency, and reliability for three-dimensional reconstruction. Then an in vivo experiment on the bead-implanted mouse has been performed to validate the feasibility of this method. The findings indicate that a tiny lesion less than 3 mm in diameter can be localized with a position bias no more than 1 mm; the computational efficiency is one to three orders of magnitude faster than the existing algorithms; this approach is robust to the different regularization parameters and the l p norms. Finally, we have applied this algorithm to another in vivo experiment on an HCCLM3 orthotopic xenograft mouse model, which suggests the PIS method holds the promise for practical applications of whole-body cancer detection.
We demonstrate a high efficiency, high linearity and high-speed silicon Mach-Zehnder modulator based on the DC Kerr effect enhanced by slow light. The two modulation arms based on 500-µm-long grating waveguides are embedded with PN and PIN junctions, respectively. A comprehensive comparison between the two modulation arms reveals that insertion loss, bandwidth and modulation linearity are improved significantly after employing the DC Kerr effect. The complementary advantages of the slow light and the DC Kerr effect enable a modulation efficiency of 0.85 V·cm, a linearity of 115 dB·Hz2/3, and a bandwidth of 30 GHz when the group index of slow light is set to 10. Furthermore, 112 Gbit/s PAM4 transmission over 2 km standard single mode fiber (SSMF) with bit error ratio (BER) below the soft decision forward error correction (SD-FEC) threshold is also demonstrated.
Based on cascaded Mach-Zehnder interferometer (MZI) lattice filters, we demonstrate and compare silicon O-band 8-channel (de-)multiplexers with flat and Gaussian-like passbands for the 400 GBASE-LR8 norm. The 1×8 (de-)multiplexer with flat passbands exhibit insertion loss less than 2.5 dB, channel crosstalk lower than -11 dB, and 3 dB bandwidths of ~3.9 nm. In contrast, the maximum insertion loss, the worst channel crosstalk, and 3 dB bandwidths of the 1×8 (de-)multiplexer with Gaussian-like passbands are 1.1 dB, -13 dB, and ~2.9 nm, respectively. The comparison result indicates that the latter is more advisable choice. A theoretical calculation based on measured coupling ratios of stand-along directional couplers (DC) indicates that the performance deteriorations of practical filtering curves are mainly caused by dispersions and fabrication errors of the DCs.
Two-dimensional (2-D) optical phased arrays (OPAs) usually suffer from limited scan ranges and small aperture sizes. To overcome these bottlenecks, we utilize an aperiodic 32 × 32 grid to increase the beam scanning range and furthermore distribute 128 grating antennas sparsely among 1024 grid points so as to reduce the array element number. The genetic algorithm is used to optimize the uneven grid spacings and the sparse distribution of grating antennas. With these measures, a 128-channel 2-D OPA operating at 1550 nm realizes a grating-lobe-free steering range of 53° × 16°, a field of view of 24° × 16°, a beam divergence of 0.31° × 0.49°, and a sidelobe suppression ratio of 9 dB.
A polarization-insensitive multimode antisymmetric waveguide Bragg grating (MASWBG) filter based on an SiN–Si dual-layer stack is demonstrated. Carefully optimized grating corrugations patterned on the sidewall of a silicon waveguide and SiN overlay are used to perturbate TE and TM modes, respectively. Furthermore, the lateral-shift apodization technique is utilized to improve the sidelobe suppression ratio (SLSR). A good overlap between the passbands measured in TE and TM polarization states is obtained. Insertion losses, SLSRs, and 3-dB bandwidths of measured passbands in TE/TM polarizations are 1/1.72 dB, 18.5/19.1 dB, and 5.1/3.5 nm, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.