Although the demand for nanomaterials has grown, researchers have not conclusively determined the effects of nanomaterials on the human body. To understand the effects of nanomaterials on occupational health, we need to estimate the respiratory toxicity of nanomaterials through inhalation studies, intratracheal instillation studies, and pharyngeal aspiration studies. The discrepancies observed among these studies tend to result from differences in the physiochemical properties of nanomaterials, such as aggregation and dispersion. Therefore, in all toxicity studies, identification of the physicochemical properties of nanomaterials is essential. This Account reviews the inhalation toxicity of manufactured nanomaterials and compares them with inhalation and intratracheal instillation studies of well-characterized fullerene and carbon nanotubes. In many reports, pulmonary inflammation and injury served as pulmonary endpoints for the inhalation toxicity. To assess pulmonary inflammation, we examined neutrophil and macrophage infiltration in the alveolar and/or interstitial space, and the expression of the neutrophil and/or monocyte chemokines. We also reported the release of lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) in the bronchoalveolar lavage fluid (BALF), the expression of oxidative stress-related genes characteristic of lung injury, and the presence of granulomatous lesion and pulmonary fibrosis. In the inhalation and intratracheal instillation studies of well-characterized fullerenes, exposure to fullerene did not induce pulmonary inflammation or transient inflammation. By contrast, in an inhalation study, a high concentration of multiwall carbon nanotubes (MWCNTs) and single-wall carbon nanotubes (SWCNTs) induced neutrophil inflammation or granulomatous formations in the lung, and intratracheal instillation of MWCNTs and SWCNTs induced persistent inflammation in the lung. Among the physicochemical properties of carbon nanotubes, the increased surface area is associated with inflammatory activity as measured by the increase in the rate of neutrophils measured in bronchoalveolar lavage fluid. Metal impurities such as iron and nickel enhanced the pulmonary toxicity of carbon nanotubes, and SWCNTs that included an amorphous carbon induced multifocal granulomas in the lung while purer SWCNTs did not. The aggregation state also affects pulmonary response: Exposure to well-dispersed carbon nanotubes led to the thickening of the alveolar wall and fewer granulomatous lesions in the lung, while agglomerated carbon nanotubes produced granulomatous inflammation. The values of the acceptable exposure concentration in some countries were based on the data of subacute and subchronic inhalation and intratracheal instillation studies of well-characterized fullerene and carbon nanotubes. In Japan, the acceptable exposure concentration of fullerene is 0.39 mg/m³. In Europe, the proposal concentration is 44.4 μg/m³ for acute toxicity and 0.27 μg/m³ for chronic toxicity. The proposal acceptable exposure concentrati...
Fullerene (carbon sixty [C(60)]) has potential industrial and medical applications. In the future, people working in or residing near manufacturing facilities may be exposed to C(60). Therefore, quantitative data on long-term C(60) clearance from the lungs are required. To estimate the clearance rate and deposition fraction of C(60) from inhalation exposure, the C(60) burden in the lungs, liver, and brain of rats was determined after intratracheal instillation and inhalation. Male Wistar rats were intratracheally instilled with different concentrations of a C(60) suspension prepared with Tween 80 (geometric mean [GM] of particle diameter based on number, 18-29 nm; geometric standard deviation [GSD] of particle diameter, 1.5; and doses, 100, 200, and 1000 micrograms per body) or exposed to a C(60) aerosol prepared with nebulizer (GM of particle diameter based on number, 96 nm; GSD of particle diameter, 2.0; and exposure level, 120 μg/m(3)). C(60) burden in the lungs, liver, and brain was determined at various time points (1 h to 6 months) by a newly developed sensitive high-performance liquid chromatography-ultraviolet absorptiometry combined with extraction and concentration of C(60) from the organs. C(60) clearance was evaluated using a 2-compartment model: fast clearance after deposition on lung surface and slow clearance after retention in the epithelium. The detection limit of our analysis method was 8.9 ng/g tissue. Pulmonary C(60) burden decreased with time and depended on the C(60) concentration administered. The concentration of C(60) in the liver and brain was below the detection limit: 8.9 ng/g tissue. The half-life of intratracheally instilled C(60) was 15-28 days. The deposition mass fraction of inhaled C(60) was 0.14. Mode evaluation revealed that most instilled particles could be eliminated by the fast clearance pathway. This finding is consistent with the transmission electron microscopy finding that many particles were present in alveolar macrophages.
BackgroundWe used fullerenes, whose dispersion at the nano-level was stabilized by grinding in nitrogen gas in an agitation mill, to conduct an intratracheal instillation study and an inhalation exposure study. Fullerenes were individually dispersed in distilled water including 0.1% Tween 80, and the diameter of the fullerenes was 33 nm. These suspensions were directly injected as a solution in the intratracheal instillation study. The reference material was nickel oxide in distilled water. Wistar male rats intratracheally received a dose of 0.1 mg, 0.2 mg, or 1 mg of fullerenes and were sacrificed after 3 days, 1 week, 1 month, 3 months, and 6 months. In the inhalation study, Wistar rats were exposed to fullerene agglomerates (diameter: 96 ± 5 nm; 0.12 ± 0.03 mg/m3; 6 hours/days for 5 days/week) for 4 weeks and were sacrificed at 3 days, 1 month, and 3 months after the end of exposure. The inflammatory responses and gene expression of cytokine-induced neutrophil chemoattractants (CINCs) were examined in rat lungs in both studies.ResultsIn the intratracheal instillation study, both the 0.1 mg and 0.2 mg fullerene groups did not show a significant increase of the total cell and neutrophil count in BALF or in the expression of CINC-1,-2αβ and-3 in the lung, while the high-dose, 1 mg group only showed a transient significant increase of neutrophils and expression of CINC-1,-2αβ and -3. In the inhalation study, there were no increases of total cell and neutrophil count in BALF, CINC-1,-2αβ and-3 in the fullerene group.ConclusionThese data in intratracheal instillation and inhalation studies suggested that well-dispersed fullerenes do not have strong potential of neutrophil inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.