BackgroundNeurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s disease with dementia (PDD), and dementia with Lewy bodies (DLB) share clinical and molecular features. Cerebrospinal fluid (CSF) biomarkers may help the characterization of these diseases, improving the differential diagnosis. We evaluated the diagnostic performance of five CSF biomarkers across a well-characterized cohort of patients diagnosed with AD, DLB, PDD, and Parkinson’s disease (PD).MethodsA total of 208 patients were enrolled in 3 European centers. The diagnostic groups (AD, n = 48; DLB, n = 40; PDD, n = 20; PD, n = 54) were compared with cognitively healthy neurological control subjects (patients with other neurological diseases [OND], n = 46). CSF levels of fatty acid binding protein 3, heart type (FABP3), α-synuclein (α-syn), amyloid-β peptide 1–42, total tau (t-tau), and phosphorylated tau 181 (p-tau) were assessed with immunoassays. Univariate and multivariate statistical analyses were applied to calculate the diagnostic value of the biomarkers as well as their association with clinical scores.ResultsFABP3 levels were significantly increased in patients with AD and DLB compared with those with PD and OND (p < 0.001). CSF t-tau, p-tau, and α-syn were significantly higher in patients with AD than in patients with PDD, DLB, PD, and OND. Combination of FABP3 with p-tau showed high accuracy for the differential diagnosis between AD and DLB (AUC 0.92), whereas patients with AD were separated from those with PDD using a combination of p-tau, FABP3, and α-syn (AUC 0.96). CSF FABP3 was inversely associated with Mini Mental State Examination score in the whole cohort (r = −0.42, p < 0.001).ConclusionsThe combination of CSF biomarkers linked to different aspects of neurodegeneration, such as FABP3, α-syn, and AD biomarkers, improves the biochemical characterization of AD and Lewy body disorders.Electronic supplementary materialThe online version of this article (doi:10.1186/s13195-017-0276-4) contains supplementary material, which is available to authorized users.
BackgroundWhile neurogranin has no value as plasma biomarker for Alzheimer’s disease, it may be a potential blood biomarker for traumatic brain injury. This evokes the question whether there are changes in neurogranin levels in blood in other conditions of brain injury, such as acute ischemic stroke (AIS).MethodsWe therefore explored neurogranin in paired cerebrospinal fluid (CSF)/plasma samples of AIS patients (n = 50) from a well-described prospective study. In parallel, we investigated another neuronal protein, i.e. tau, which has already been suggested as potential AIS biomarker in CSF and blood. ELISA as well as Single Molecule Array (Simoa) technology were used for the biochemical analyses. Statistical analyses included Shapiro-Wilk testing, Mann-Whitney analyses and Pearson’s correlation analysis.ResultsIn contrast to tau, of which high levels in both CSF and plasma were related to stroke characteristics like severity and long-term outcome, plasma neurogranin levels were only correlated with infarct volume. Likewise, CSF neurogranin levels were significantly higher in patients with an infarct volume > 5 mL than in patients with smaller infarct volumes. Finally, neurogranin and tau were significantly correlated in CSF, whereas a weaker relationship was observed in plasma.ConclusionsThese findings indicate that although plasma and CSF neurogranin may reflect the volume of acute cerebral ischemia, this synaptic protein is less likely to be a potential AIS biomarker. Levels of tau correlated with severity and outcome of stroke in both plasma and CSF, in the present study as well as previous reports, confirming the potential of tau as an AIS biomarker.Electronic supplementary materialThe online version of this article (10.1186/s12883-017-0945-8) contains supplementary material, which is available to authorized users.
During the past ten years, over 5,000 cerebrospinal fluid (CSF) samples were analyzed at the Reference Center for Biological Markers of Dementia (BIODEM), UAntwerp, for core Alzheimer's disease (AD) CSF biomarkers: amyloid-β peptide of 42 amino acids (Aβ1-42), total tau protein (T-tau), and tau phosphorylated at threonine 181 (P-tau181P). CSF biomarker analyses were performed using single-analyte ELISA kits. In-house validated cutoff values were applied: Aβ1-42 <638.5 pg/mL, T-tau >296.5 pg/mL, P-tau181P >56.5 pg/mL. A CSF biomarker profile was considered to be suggestive for AD if the CSF Aβ1-42 concentration was below the cutoff, in combination with T-tau and/or P-tau181P values above the cutoff (IWG2 criteria for AD). Biomarker analyses were requested for following clinical indications: 1) neurochemical confirmation of AD in case of clinical AD, 2) neurochemical confirmation of AD in case of doubt between AD and a non-AD dementia, 3) neurochemical diagnosis of prodromal AD in case of mild cognitive impairment, 4) neurochemical confirmation of AD in case of psychiatric symptoms (like depression, psychosis), or 5) other clinical indications. During these ten years, the number of yearly referred samples increased by 238% and clinical indications for referral showed a shift from neurochemical confirmation of AD in case of clinical AD to differential dementia diagnosis in case of doubt between AD and a non-AD dementia. Four percent of the patients also had a postmortem neuropathological examination. Together, these biomarker data were the basis for several research papers, and significantly contributed to the validation of these biomarkers in autopsy-confirmed subjects.
MicroRNAs (miRNAs) regulate translational inhibition of proteins, but are also detected in body fluids, including cerebrospinal fluid (CSF), where they may serve as disease-specific biomarkers. Previously, we showed differential expression of miR-146a, miR-29a, and miR-125b in the CSF of Alzheimer's disease (AD) patients versus controls. In this study, we aim to confirm these findings by using larger, independent sample cohorts of AD patients and controls from three different centers. Furthermore, we aim to identify confounding factors that possibly arise using such a multicenter approach. The study was extended by including patients diagnosed with mild cognitive impairment due to AD, frontotemporal dementia and dementia with Lewy bodies. Previous results of decreased miR-146a levels in AD patients compared to controls were confirmed in one center. When samples from all three centers were combined, several confounding factors were identified. After controlling for these factors, we did not identify differences in miRNA levels between the different groups. However, we provide suggestions to circumvent various pitfalls when measuring miRNAs in CSF to improve future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.