Rationale:The turnover of cardiomyocytes in the aging female and male heart is currently unknown, emphasizing the need to define human myocardial biology.Objective: The effects of age and gender on the magnitude of myocyte regeneration and the origin of newly formed cardiomyocytes were determined.
Methods and Results:The interaction of myocyte replacement, cellular senescence, growth inhibition, and apoptosis was measured in normal female (n)23؍ and male (n)24؍ human hearts collected from patients 19 to 104 years of age who died from causes other than cardiovascular diseases. A progressive loss of telomeric DNA in human cardiac stem cells (hCSCs) occurs with aging and the newly formed cardiomyocytes inherit short telomeres and rapidly reach the senescent phenotype. Our data provide novel information on the superior ability of the female heart to sustain the multiple variables associated with the development of the senescent myopathy. At all ages, the female heart is equipped with a larger pool of functionally competent hCSCs and younger myocytes than the male myocardium. The replicative potential is higher and telomeres are longer in female hCSCs than in male hCSCs. In the female heart, myocyte turnover occurs at a rate of 10%, 14%, and 40% per year at 20, 60, and 100 years of age, respectively. Corresponding values in the male heart are 7%, 12%, and 32% per year, documenting that cardiomyogenesis involves a large and progressively increasing number of parenchymal cells with aging. From 20 to 100 years of age, the myocyte compartment is replaced 15 times in women and 11 times in men.
Conclusions:The human heart is a highly dynamic organ regulated by a pool of resident hCSCs that modulate cardiac homeostasis and condition organ aging.
Our results indicate that at lower dose, resveratrol-mediated cell survival is, in part, mediated through the induction of autophagy involving the mTOR-Rictor survival pathway.
Autophagy is an intracellular process in which a cell digests its own constituents via lysosomal degradative pathway. Though autophagy has been shown in several cardiac diseases like heart failure, hypertrophy and ischaemic cardiomyopathy, the role and the regulation of autophagy is still largely unknown. Bcl-2-associated athanogene (BAG-1) is a multifunctional pro-survival molecule that binds with Hsp70/Hsc70. In this study, myocardial adaptation to ischaemia by repeated brief episodes of ischaemia and reperfusion (I/R) prior to lethal I/R enhanced the expression of autophagosomal membrane specific protein light chain 3 (LC3)-II, and Beclin-1, a molecule involved in autophagy and BAG-1. Autophagosomes structures were found in the adapted myocardium through electron microscopy. Co-immunoprecipitation and co-immunofluorescence analyses revealed that LC3-II was bound with BAG-1. Inhibition of autophagy by treating rats with Wortmannin (15 μg/kg; intraperitoneally) abolished the ischaemic adaptation-induced induction of LC3-II, Beclin-1, BAG-1 and cardioprotection. Intramyocardial injection of BAG-1 siRNA attenuated the induction of LC3-II, and abolished the cardioprotection achieved by adaptation. Furthermore, hypoxic adaptation in cardiac myoblast cells induced LC3-II and BAG-1. BAG-1 siRNA treatment attenuated hypoxic adaptation-induced LC3-II and BAG-1, and abolished improvement in cardiac cell survival and reduction of cell death. These results clearly indicate that myocardial protection elicited by adaptation is mediated at least in part via up-regulation of autophagy in association with BAG-1 protein.
Resveratrol, initially used for cancer therapy, has shown beneficial effects against most degenerative and cardiovascular diseases from atherosclerosis, hypertension, ischemia/reperfusion, and heart failure to diabetes, obesity, and aging. The cardioprotective effects of resveratrol are associated with its preconditioning-like action potentiated by its adaptive response. During preconditioning, small doses of resveratrol can exert an adaptive stress response, forcing the expression of cardioprotective genes and proteins such as heat shock and antioxidant proteins. Similarly, resveratrol can induce autophagy, another form of stress adaptation for degrading damaged or long-lived proteins, as a first line of protection against oxidative stress. Resveratrol's interaction with multiple molecular targets of diverse intracellular pathways (e.g., action on sirtuins and FoxOs through multiple transcription factors and protein targets) intertwines with those of the autophagic pathway to give support in the modified redox environment after stem cell therapy, which leads to prolonged survival of cells. The successful application of resveratrol in therapy is based upon its hormetic action similar to any toxin: exerting beneficial effects at lower doses and cytotoxic effects at higher doses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.