The herbal-based drug isolation-related research has increased recently around the globe. Accordingly, the current study was designed to evaluate the phytochemical content of ethanol extract of Martynia annua and its chitosan nanoparticles (MA-CNPs) antibacterial activity against bacterial pathogens such as Bacteroides fragilis, Streptococcus oralis MTCC 2696, Propionibacterium acnes MTCC 1951, Pseudomonas aeruginosa MTCC 424, Staphylococcus aureus MTCC 2940, E. coli MTCC 443, Bacillus cereus MTCC 441, Streptococcus mutans MTCC 890, Aeromonas hydrophila MTCC 12301, and Streptococcus faecalis by agar well diffusion methods. The obtained results showed that the ethanol extract of M. annua contains more pharmaceutically valuable phytochemicals than other solvent extracts and its mediated chitosan nanoparticles showed effective antibacterial activities. The ethanol extract also effectively reduced, capped, and stabilized the chitosan into MA-CNPs. The green synthesized MA-CNPs were characterized and confirmed through UV-visible spectrophotometer, FT-IR, SEM, and DLS analyses. The MA-CNPs exhibited considerable antibacterial activity in the order of Bacteroides fragilis > Streptococcus oralis > Propionibacterium acnes > Pseudomonas aeruginosa > Staphylococcus aureus > E. coli > Bacillus cereus > Streptococcus mutans > Aeromonas hydrophila> Streptococcus faecalis. Finally, the results strongly recommended that the ethanol extract of M. annua-mediated chitosan nanoparticles could be considered an effective nanomaterial to control microbial pathogens. Further, therapeutical uses of MA-CNPs need in vitro and in vivo investigation.
The current study was performed with aim of evaluating antioxidant, cytotoxicity, α-amylase, and α-glucosidase inhibitory activities and mutagenicity properties of Martynia annua mediated Chitosan nanoparticles (MAL-CNPs). The green synthesized MAL-CNPs were characterized and confirmed through several characterization techniques, including UV-visible spectroscopy (UV-Vis), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and dynamic light scattering (DLS). The HR-TEM analysis exhibited that the as-synthesized chitosan nanoparticles are spherical in shape. Furthermore, the DLS analysis exhibited that the average size of MAL-CNPs was 53 nm and the maximum diameter was 130.7 nm. The antioxidant activity results revealed that the MAL-CNPs showed DPPH (2,2-diphenyl-1-picrylhydrazyl) (66.78%) and H2O2 (91.65%) scavenging activities at 50 µg/mL concentration. The IC50 values were 2.431 μg/mL and 50 µg/mL for DPPH and H2O2, respectively. MTT (3-4, 5 dimethylthiazol-2yl-2, 5-diphenyltetrazolium bromide) assay results exhibited dose-dependent cytotoxicity found from 50 μg/mL concentration of MAL-CNPs. The MAL-CNPs showed remarkable α-glucosidase and α-amylase inhibitory activity (IC50 1.981 μg/mL and 161.8 μg/mL). No toxic effect of MAL-CNPs was found through the Ames test. Further, the study concluded that MAL-CNPs are non-toxic and possess adequate antioxidants and cytotoxicity activity against cancer cells, α-glucosidase, and α-amylase inhibitory activity. Hence, the MAL-CNPs were considered for biomedical applications after the assessment of their efficiency and safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.