This study was designed to investigate bla encoded within IncX3 type plasmid and their copy number alteration under carbapenem pressure within clinical isolates of Escherichia coli. NDM-4 producing E. coli isolates were collected from an Indian hospital and transferability as well as plasmid incompatibility typing was determined. Genetic environment and antibiogram profiling was carried out. Quantitative Real Time PCR was done to determine the change in plasmid copy number under concentration gradient carbapenem stress. Multilocus sequence typing and pulsed field gel electrophoresis was performed for typing of isolates. Four multidrug resistant isolates were found to harbour transconjugable bla carrying within IncX3 type plasmid. The bla was flanked by insertion sequences ISAba125 and IS5 in the upstream region whereas ble was present in the downstream area. Copy number results indicated that the bla gene was maintained high in plasmid under exposure of ertapenem. All the strains belonged to ST448 and PFGE analysis revealed three different pulsotypes. This is the first report of bla encoded IncX3 type plasmid in E. coli of ST448 and needs a systematic screening policy to rapid detection of NDM-4 poducing strains to prevent dissemination of this resistant determinant in future.
BackgroundRapid emergence of multidrug resistant (MDR) organisms in hospital and community settings often result into treatment failure, thus leading the clinicians with fewer treatment options. Cyathea gigantea, an ethnomedicinally important fern used in cuts and wound infections. So, if this medicinal plant is used in treating the MDR infections then it might bring certain relief in future treatment options.MethodsAntibacterial activity of C. gigantea against MDR bacteria was assed using well diffusion and broth microdilution methods to determine the diameters of growth inhibition zones, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Synergistic activity was also determined with the conventional antibiotics by disc diffusion method followed by FIC index of each of the tested antibiotic was calculated. The active extract was then subjected to fractionation by column chromatography and antibacterial activity was done with each of the collected fractions.ResultsCrude extract of C. gigantea was found to be active against all the tested organisms. The MIC was 200 μg/ml against Gram-positive i.e., Staphylococcus aureus ATCC 25923 and 400 μg/ml against Gram-negative i.e., Escherichia coli ATCC 25922 and Pseudomonas aeruginosa PAO1, while the MBC was 400 μg/ml in case of Gram-positive and 800 μg/ml for Gram-negative. The synergistic activity revealed that the plant extract increased the antibacterial property of the studied antibiotics and the FIC index showed that significant synergistic activity was shown by ciprofloxacin followed by tetracycline, ampicillin and oxacillin. Antibacterial activity with the fractionated extract showed that the FR II, FR III and FR IV were active against both Gram-positive and Gram-negative bacteria, whereas FR I, FR V and FR VI did not show antibacterial property against any of the tested bacteria.ConclusionsExtracts of C. gigantea was found active against both selected Gram-positive and Gram-negative organisms and thus offers the scientific basis for the traditional use of the fern. The present study also provides the basis for future study to validate the possible use against multidrug resistant organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.