This work investigates the effect of a modified nickel‐doped metal‐organic framework (Ni‐ZIF‐67) as a filler on thermal, mechanical, and water vapor permeability properties of environmentally friendly waterborne polyurethane (WPU). The facile and greener ultrasound (sonochemical) technique is developed to prepare multifunctional Ni‐ZIF‐67@WPU nanocomposites, exhibiting superior crystallinity and uniform distribution. The resultant Ni‐ZIF‐67 nanoparticles and Ni‐ZIF‐67@WPU films are characterized by various techniques, including powder XRD, FE‐SEM, FTIR, TGA, UTM, contact angle, and antibacterial properties. Ni‐ZIF‐67@WPU nanocomposites exhibited excellent three‐fold mechanical performance (tensile strength ≈22 MPa) at a very low 5 wt.% filler loading and high thermal stability compared to pristine WPU. In addition, Ni‐ZIF‐67@WPU exhibited optimum water vapor permeability performance at 5.0 wt.% filler with the potential antibacterial application. Demonstrate that the rapid and facile synthesis approach can enhance the interaction of filler and matrix, high surface area, and tuneable pore size of filler material. This new insight has a new green approach for fabricating advanced nanocomposites toward practical utilization.
The present study deals with the intensified synthesis of starchpolyaniline (starch-PANI) nanocomposite using an ultrasound-assisted method. Starch is a key component in this nanocomposite, which acts as a backbone of the nucleation of PANI. The Electrochemical property of the nanocomposite arises due to the addition of PANI. This is one of green approach for the synthesis of bio nanocomposite using ultrasound. The crystallinity of the composite is evaluated using the Scherrer Formula. The starch-PANI nanocomposite was characterized by XRD, FT-IR, Raman, XPS and TEM. The composite nanoparticles show spherical morphology. The elemental composition of starch-PANI showed O 1s peak at 546 eV, N 1s peak at 416 eV, C 1s peak at 286 eV and S 1s peak at 176 eV. The electrochemical studies of the starch-PANI electrodes are evaluated by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS). Starch-PANI electrode has shown the maximum specific capacitance of 499.5 F/g at 5 mV/s scan rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.