Despite recent therapeutic advances, multiple myeloma (MM) remains largely incurable. Herein we report results of a phase I/II trial to evaluate the safety and activity of autologous T-cells engineered to express an affinity-enhanced T-cell receptor (TCR) recognizing a naturally processed peptide shared by the cancer-testis antigens NY-ESO-1 and LAGE-1. Twenty patients with antigen-positive MM received an average 2.4×109 engineered T cells two days after autologous stem cell transplant (ASCT). Infusions were well-tolerated without clinically apparent cytokine release syndrome, despite high IL-6 levels. Engineered T-cells expanded, persisted, trafficked to marrow and exhibited a cytotoxic phenotype. Persistence of engineered T cells in blood was inversely associated with NY-ESO-1 levels in the marrow. Disease progression was associated with loss of T cell persistence or antigen escape, consistent with the expected mechanism of action of the transferred T cells. Encouraging clinical responses were observed in 16 of 20 patients (80%) with advanced disease, with a median progression free survival of 19.1 months. NY-ESO-1/LAGE-1 TCR-engineered T-cells were safe, trafficked to marrow and showed extended persistence that correlated with clinical activity against antigen-positive myeloma.
SUMMARY
A patient with refractory multiple myeloma received an infusion of CTL019 cells, a cellular therapy consisting of autologous T cells transduced with an anti-CD19 chimeric antigen receptor, after myeloablative chemotherapy (melphalan, 140 mg per square meter of body-surface area) and autologous stem-cell transplantation. Four years earlier, autologous transplantation with a higher melphalan dose (200 mg per square meter) had induced only a partial, transient response. Autologous transplantation followed by treatment with CTL019 cells led to a complete response with no evidence of progression and no measurable serum or urine monoclonal protein at the most recent evaluation, 12 months after treatment. This response was achieved despite the absence of CD19 expression in 99.95% of the patient’s neoplastic plasma cells. (Funded by Novartis and others; ClinicalTrials.gov number, NCT02135406.)
Purpose
Myeloma-directed cellular immune responses after autologous stem cell transplantation (ASCT) may reduce relapse rates. We studied whether coinjecting the TLR-3 agonist and vaccine adjuvant Poly-ICLC with a MAGE-A3 peptide vaccine was safe and would elicit a high frequency of vaccine-directed immune responses when combined with vaccine-primed and costimulated autologous T cells.
Experimental Design
In a phase II clinical trial (NCT01245673), we evaluated the safety and activity of ex vivo expanded autologous T cells primed in vivo using a MAGE-A3 multipeptide vaccine (compound GL-0817) combined with Poly-ICLC (Hiltonol), granulocyte macrophage colony-stimulating factor (GM-CSF) ± montanide. Twenty-seven patients with active and/or high-risk myeloma received autografts followed by anti-CD3/anti-CD28–costimulated autologous T cells, accompanied by MAGE-A3 peptide immunizations before T-cell collection and five times after ASCT. Immune responses to the vaccine were evaluated by cytokine production (all patients), dextramer binding to CD8+ T cells, and ELISA performed serially after transplant.
Results
T-cell infusions were well tolerated, whereas vaccine injection site reactions occurred in >90% of patients. Two of nine patients who received montanide developed sterile abscesses; however, this did not occur in the 18 patients who did not receive montanide. Dextramer staining demonstrated MAGE-A3–specific CD8 T cells in 7 of 8 evaluable HLA-A2+ patients (88%), whereas vaccine-specific cytokine-producing T cells were generated in 19 of 25 patients (76%). Antibody responses developed in 7 of 9 patients (78%) who received montanide and only weakly in 2 of 18 patients (11%) who did not. The 2-year overall survival was 74% [95% confidence interval (CI), 54%–100%] and 2-year event-free survival was 56% (95% CI, 37%–85%).
Conclusions
A high frequency of vaccine-specific T-cell responses were generated after transplant by combining costimulated autologous T cells with a Poly-ICLC/GM-CSF–primed MAGE-A3 vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.