Purpose: In the current study, using different radiobiological models, tumor control probability (TCP) and normal tissue complication probability (NTCP) of radiotherapy plans were calculated for three-dimensional conformal radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) of prostate cancer.Methods and Materials: 10 prostate plans were randomly selected among patients undergoing radiation therapy of prostate cancer. For each patient, 3D-CRT and IMRT plans were designed to deliver, on average 76 Gy and 82 Gy to planning target volume, respectively. Using different radiobiological models including Poisson, equivalent uniform dose (EUD) and Lyman-Kutcher-Burman (LKB), TCP and NTCP were calculated for prostate and critical organs including bladder, rectum and femoral heads.Results: IMRT plans provided significantly lower NTCP for bladder, rectum and femoral heads using LKB and EUD models (p-value <0.05). The EUD-calculated TCP for prostate cancer revealed no considerable improvement for IMRT plans relative to 3D-CRT plans. However, the TCPs calculated by Poisson model were dependent on α/β, and higher TCP for IMRT relative to 3D-CRT was seen for α/β higher than 5.Conclusion: It can be concluded that IMRT plans were superior to 3D-CRT plans in terms of estimated NTCP for studied critical organs. On the other hand, different mathematical models provided different quantitative outcome for TCP of prostate cancer plans. More clinical studies are suggested to confirm the accuracy of studied radiobiological models.
Nanotheranostics has attracted much attention due to its widespread application in molecular imaging and cancer therapy. Molecular imaging using nanoparticles has attracted special attention in the diagnosis of cancer at early stages. With the progress made in nanotheranostics, studying drug release, accumulation in the target tissue, biodistribution, and treatment effectiveness are other important factors. However, according to the studies conducted in this regard, each nanoparticle has some advantages and limitations that should be examined and then used in clinical applications. The main goal of this review is to explore the recent advancements in nanotheranostics for cancer therapy and diagnosis. Then, it is attempted to present recent studies on nanotheranostics used as a contrast agent in various imaging modalities and a platform for cancer therapy.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Colorectal cancer is highly prevalent worldwide and has significant morbidity and mortality in humans. High-atomic-number nanoparticles such as iodine can act as X-rays absorbers to increase the local dose. The synthesis and fabrication of oxaliplatin-loaded iodine nanoparticles, their characterization, cell toxicity, radiosensitivity, cell apoptosis, and cell cycle assay in human colorectal cancer (HT-29) cells are investigated. Results show that the synthesis of a new iodine nanoparticle, polymerized triiodobenzene coated with chitosan and combined with oxaliplatin as a chemotherapeutic drug, performed well in vitro in an intracellular radiosensitizer as chemoradiotherapy agent in HT-29 cell lines. Findings also show that the INPs alone have no impact on cell cycle development and apoptosis. In contrast, oxaliplatin-loaded INPs along with 2 and 6 MV radiation doses produced more apoptosis. The interaction of INPs with mega-voltage photon energies is the cause of a major radiosensitization enhancement in comparison to radiation alone. Furthermore, results show that INPs may work as radiosensitization nanoprobe agents in the treatment of HT-29 cells due to their effect on increasing radiation dose absorption. Overall, iodine nanoparticles may be used in the treatment of colorectal cancers in clinical studies.
Background: Glioblastoma multiforme (GBM) is the most common and malignant brain tumor. The current standard of care is surgery followed by radiation therapy (RT). Radiotherapy treatment plan evaluation relies on radiobiological models for accurate estimation of tumor control probability (TCP). This study aimed to assess the impact of obtained magnetic resonance imaging (MRI) data before and 12 weeks after RT to achieve the optimum TCP model to improve dose prescriptions in radiation therapy of GBM. Materials and Methods:: In this quasi-experimental study, MR images and its relevant data from 30 patients consisting of 9 females and 21 males (mean age of 46.3 ± 15.8 years) diagnosed with GBM, whose referred for radiotherapy were selected. The data of age, gender, tumor size, volume, and signal intensity using analysis of MRI data pre- and postradiotherapy were used for calculating TCP. TCP was calculated from three common radiobiological models including Poisson, linear quadratic, and equivalent uniform dose. The impact of some radiobiological parameters on final TCP in all patients planned with three-dimensional conformal radiation therapy was obtained. Results: A statistically significant difference was found among TCP in Poisson model compared to the other two models (P < 0.001). Changes in tumor volume and size after treatment were statistically significant (P < 0.05). Different combinations of radiobiological parameters (α/β and SF2 in all models) observed were meaningful (P < 0.05). Conclusion: The results showed that among TCP radiobiological models, the optimum is the Poisson. The results also identified the importance of TCP radiobiological models in order to improve radiotherapy dose prescriptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.