Esca is a grapevine disease known for centuries which pertains to the group of so-called vine trunk diseases. Phaeomoniella chlamydospora (P. chlamydospora) and Phaeoacremonium aleophilum (P. aleophilum) are the two main fungal pathogens associated with esca. Novel fibrous materials with antifungal properties based on poly(3-hydroxybutyrate) (PHB), polyvinylpyrrolidone (PVP) and 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol, CQ) were developed. One-pot electrospinning (“in” strategy) or electrospinning in conjunction with electrospraying (“on” strategy) were applied to obtain the materials. The materials’ morphology and their surface chemical composition were examined using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). CQ incorporated in the bulk of the fibers or in PVP particles deposited on the fibers was in the amorphous phase, which was confirmed by differential scanning calorimetry (DSC) and X-ray diffraction analysis (XRD). The in vitro release of CQ depended on the composition of the electrospun materials and on their design. The performed microbiological screening revealed that, unlike the non-loaded mats, the fibrous mats loaded with CQ were effective in inhibiting the growth of the pathogenic P. chlamydospora and P. aleophilum fungi. Therefore, the created materials are promising as active dressings for grapevine protection against esca.
Nowadays, diseases in plants are a worldwide problem. Fungi represent the largest number of plant pathogens and are responsible for a range of serious plant diseases. Esca is a grapevine disease caused mainly by fungal pathogens Phaeomoniella chlamydospora (P. chlamydospora) and Phaeoacremonium aleophilum (P. aleophilum). The currently proposed methods to fight esca are not curative. In this study, polymer composites based on biodegradable polymer containing chemical fungicides with antifungal activity were successfully prepared by electrospinning. The obtained materials were hydrophobic with good mechanical properties. In vitro studies demonstrated that the fungicide release was higher from PLLA/K5N8Q fibrous mats (ca. 72% for 50 h) compared to the released drug amount from PLLA/5-Cl8Q materials (ca. 52% for 50 h), which is due to the better water-solubility of the salt. The antifungal activity of the fibrous materials against P. chlamydospora and P. aleophilum was studied as well. The incorporation of the fungicide in the biodegradable fibers resulted in the inhibition of fungal growth. The obtained materials are perspective candidates for the protection of vines from the penetration and growth of fungal pathogens.
Suitable conditions for the preparation of nano- and microstructured materials from cellulose acetate and cellulose acetate/ZnO from solutions/suspensions in aceton/water by electrospinning/electrospraying were found. The materials obtained were characterised by scanning electron microscopy (SEM), X-ray diffraction analysis (XRD) and contact angle measurements. The antifungal activity of the materials obtained against Phaeomoniella chlamydospora, which is one of the main species causing diseases in grapevines, was studied as well. It was found that electrospinning of CA solutions with a concentration of 10 wt% reproducibly resulted in the preparation of defect-free fibres with a mean fibre diameter of ~780 nm. The incorporation of ZnO nanoparticles resulted in the fabrication of hybrid materials with superhydrophobic properties (contact angle 152°). The materials decorated with ZnO possessed antifungal activity against P. chlamydospora. Thus, the fibrous materials of cellulose acetate decorated with ZnO particles obtained can be suitable candidates to find potential application in agriculture for plant protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.