Tissue engineering and regenerative medicine represent areas of increasing interest because of the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Graphene and its derivatives have attracted much interest for applications in bone tissue engineering. For this purpose, this review focuses on more recent advances in tissue engineering based on graphene-biomaterials from 2013 to May 2015. The purpose of this article was to give a general description of studies of nanostructured graphene derivatives for bone tissue engineering. In this review, we highlight how graphene family nanomaterials are being exploited for bone tissue engineering. Firstly, the main requirements for bone tissue engineering were discussed. Then, the mechanism by which graphene based materials promote new bone formation was explained, following which the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed. In addition, graphenebased bioactive glass, as a potential drug/growth factor carrier, was reviewed which includes the composition-structuredrug delivery relationship and the functional effect on the tissue-stimulation properties. Also, the effect of structural and textural properties of graphene based materials on development of new biomaterials for production of bone implants and bone cements were discussed. Finally, the present review intends to provide the reader an overview of the current state of the graphene based biomaterials in bone tissue engineering, its limitations and hopes as well as the future research trends for this exciting field of science.
Tissue engineering has been emerging as a valid approach to the current therapies for bone regeneration/substitution. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Scaffolds play a central role in tissue engineering research, they not only provide as structural support for specific cells but also provide as the templates to guide new tissue growth and construction. In this survey we describe application of graphene based nano-biomaterials for bone tissue engineering. In this article, application of different graphene based materials on construction of manufacture scaffolds for bone tissue engineering was discussed. It begins by giving the reader a brief background on tissue engineering, followed by a comprehensive description of all the relevant components of graphene based materials, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to “engineered” bone. In this survey, more recent studies on the effects of graphene on surface modifications of scaffold materials was discused. The ability of graphene to improve the biological properties of scaffold materials, and its ability to promote the adhesion, proliferation, and osteoblasts have been demonstrated in several studies which we discuss in this survey article. We further highlight how the properties of graphene are being exploited for scaffolds in bone tissue engineering, comprehensively surveying recent experimental works featuring graphene and graphene derivatives. Bone tissue engineering, for the purpose of this survey, is the use of a scaffolding material to either induce formation of bone from the surrounding tissue or to act as a carrier or template for implanted bone cells or other agents. Materials used as bone tissue-engineered scaffolds may be injectable or rigid, the latter requiring an operative implantation procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.