This paper reports the synthesis and the antiviral activities of a series of 6-arylmethyl-1-(allyloxymethyl)-5-alkyluracil derivatives, which can be viewed as analogues of the anti-HIV-1 drug emivirine (formerly MKC-442) from which they differ in the replacement of the ethoxymethyl group with variously allyloxymethyl moieties. The most active compounds N-1 allyloxymethyl- and N-1 3-methylbut-2-enyl substituted 5-ethyl-6-(3,5-dimethylbenzyl)uracils (12 and 13) showed activity against HIV-1 wild-type in the picomolar range with selective index of greater than 5 x 10(6) and activity in the submicromolar range against the clinically important Y181C and K103N mutant strains known to be resistant to emivirine. Structure-activity relationship studies established a correlation between the anti-HIV-1 activity and the substitution pattern of the N-1 allyloxymethyl group.
The reaction of 3-(1-adamantyl)-4-substituted-1,2,4-triazoline-5-thiones 3a-g with sodium chloroacetate, in ethanolic sodium hydroxide yielded the corresponding N1-acetic acid derivatives 4a-g. The interaction of 3a-g with ethyl 2-bromopropionate in acetone, in the presence of potassium carbonate, yielded the corresponding N1-ethyl propionate derivatives 5a-g, which upon hydrolysis with aqueous sodium hydroxide afforded the corresponding propionic acid derivatives 6a-g. Similarly, the reaction of 3-(1-adamantyl)-4-amino-1,2,4-triazoline-5-thione 7 with sodium chloroacetate in ethanolic sodium hydroxide yielded the corresponding N1-acetic acid derivative 8. On the other hand, the reaction of 2-(1-adamantyl)-1,3,4-oxadiazoline-5-thione 9 with sodium chloroacetate yielded the corresponding S-acetic acid derivative 10. Compounds 4a-g, 5b, 5c, 5g, 6a-g, 8 and 10 were tested for in vitro activities against a panel of Gram-positive and Gram-negative bacteria and the yeast-like pathogenic fungus Candida albicans. Several derivatives produced good or moderate activities particularly against Bacillus subtilis. In addition, the in vivo anti-inflammatory activities of these compounds were determined using the carrageenin-induced paw oedema method in rats. Compounds 4a, 4b, 4e, 4f, 6f, 6g and 10 produced good dose-dependent anti-inflammatory activities.
Novel emivirine and TNK-651 analogues 5a-d were synthesized by reaction of chloromethyl ethyl ether and / or benzyl chloromethyl ether, respectively, with uracils having 5-ethyl and 6-(4-methylbenzyl) or 6-(3,4-dimethoxybenzyl) substituents. A series of new uracil non-nucleosides substituted at N-1 with cyclopropylmethyloxymethyl 9a-d, 2-phenylethyloxymethyl 9e-h, and 3-phenylprop-1-yloxymethyl 9i-l were prepared on treatment of the corresponding uracils with the appropriate acetals 8a-c. Some of the tested compounds showed good activity against HIV-1 wild type. Among them, 1-cyclopropylmethyloxymethyl-5-ethyl-6-(3,5-dimethylbenzyl)uracil 9c and 5-ethyl-6-(3,5-dimethylbenzyl)-1-(2-phenylethyloxymethyl)uracil 9g showed inhibitory potency equally to emivirine against HIV-1 wild type. Furthermore, compounds 9c and 9g showed marginal better activity against NNRTI resistant mutants than emivirine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.