An investigation for the initiation of a chain-growth polymerization, Kumada catalyst-transfer polycondensation, for the synthesis of poly(3-hexylthiophene) is described. A novel method for the generation of an active catalyst/initiator complex was developed utilizing the inexpensive, air stable Ni(PPh3)2Cl2 precursor to generate the active Ni(PPh3)4 catalyst in situ. Poly(3-hexylthiophene) polymerization reactions were carried out using aryl halides with various substituents on the phenyl ring as external initiators, and it was found that the type of the functional group present on the initiator plays a crucial role in the polymerization. The new method provided a more efficient way to initiate polymerization yielding polymers with higher regioregularity, larger molecular weight, and lower polydispersity than the previously reported methods.
Poly(3-methylthiophene) (P3MT) was synthesized directly from indium tin oxide (ITO) electrodes modified with a phosphonic acid initiator, using Kumada catalyst transfer polymerization (KCTP). This work represents the first time that polymer thickness has been controlled in a surface initiated KCTP reaction, highlighting the utility of KCTP in achieving controlled polymerizations. Polymer film thicknesses were regulated by the variation of the solution monomer concentration and ranged from 30 to 265 nm. Electrochemical oxidative doping of these films was used to manipulate their near surface composition and effective work function. Doped states of the P3MT film are maintained even after the sample is removed from solution and potential control confirming the robustness of the films. Such materials with controllable thicknesses and electronic properties have the potential to be useful as interlayer materials for organic electronic applications.
Externally initiated polymerization of 2-bromo-3-hexyl-5-iodothiophene was attempted from four aryl and thiophene based small molecule initiators functionalized with a phosphonate moiety. Initiated poly(3-hexylthiophene) product was obtained in various yields depending on the nature of the initiating molecule. Reaction intermediates for the oxidative addition and the ligand exchange steps were analyzed utilizing both experimental and theoretical methods. It was observed that an ortho substituent plays a crucial role in the outcome of the polymerization mechanism and that aryl based initiators are generally more stable than thiophene based initiators. Density functional theory (DFT) calculations revealed the importance of the steric effects on the success of the externally initiated chain growth polymerization mechanism.
The effects of binding ligand variation on the externally initiated Ni catalyzed polymerization of P3HT were investigated using a novel methodology allowing facile screening of ligands. P3HT was synthesized with >80% initiator incorporation for both mono‐ and bidentate phosphine ligands. Variation of the initiating aryl group demonstrated vastly superior results for o‐tolyl over p‐tolyl substituents.
Conventional damascene electroplating uses a combination of organic additives, namely, a suppressor, an accelerator, and a leveler, to achieve superconformal fill of interconnects. This work demonstrates an alternative mechanism that produces bottom-up cobalt deposition through a combination of pH and suppressor gradient formation within the patterned features. The fill mechanism was investigated using voltammetric and electrochemical quartz crystal microbalance measurements. The results show that local pH affects both the deposition rate and the current efficiency for cobalt deposition, which, combined with the kinetic effects of suppressor-type additives, drive a plating rate differential between the field and the feature-bottom. By appropriately selecting solution concentrations, organic additives, the waveform, and the mass transport conditions, void-free superconformal cobalt fill can be achieved in a variety of features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.