The catalysed ring opening copolymerizations (ROCOP) of carbon dioxide/epoxide or anhydride/epoxide are controlled polymerizations that access useful polycarbonates and polyesters. Here, a systematic investigation of a series of heterodinuclear Mg(II)M(II) complexes reveals which metal combinations are most effective. The complexes combine different first row transition metals (M(II)) from Cr(II) to Zn(II), with Mg(II); all complexes are coordinated by the same macrocyclic ancillary ligand and by two acetate co‐ligands. The complex syntheses and characterization data, as well as the polymerization data, for both carbon dioxide/cyclohexene oxide (CHO) and endo‐norbornene anhydride (NA)/cyclohexene oxide, are reported. The fastest catalyst for both polymerizations is Mg(II)Co(II) which shows propagation rate constants (kp) of 34.7 mM−1 s−1 (CO2) and 75.3 mM−1 s−1 (NA) (100 °C). The Mg(II)Fe(II) catalyst also shows excellent performances with equivalent rates for CO2/CHO ROCOP (kp=34.7 mM−1 s−1) and may be preferable in terms of metallic abundance, low cost and low toxicity. Polymerization kinetics analyses reveal that the two lead catalysts show overall second order rate laws, with zeroth order dependencies in CO2 or anhydride concentrations and first order dependencies in both catalyst and epoxide concentrations. Compared to the homodinuclear Mg(II)Mg(II) complex, nearly all the transition metal heterodinuclear complexes show synergic rate enhancements whilst maintaining high selectivity and polymerization control. These findings are relevant to the future design and optimization of copolymerization catalysts and should stimulate broader investigations of synergic heterodinuclear main group/transition metal catalysts.
Titanium(IV) complexes of amino-tris(phenolate) ligands (LTiX, X = chloride, isopropoxide) together with bis-(triphenylphosphine)iminium chloride (PPNCl) are active catalyst systems for the ring-opening copolymerization of carbon dioxide and cyclohexene oxide. They show moderate activity, with turnover frequency values of ∼60 h −1 (0.02 mol % of catalyst, 80 °C, 40 bar of CO 2 ) and high selectivity (carbonate linkages >90%), but their absolute performances are lower than those of the most active Ti(IV) catalyst systems. The reactions proceed with linear evolution of polycarbonate (PCHC) molar mass with epoxide conversion, consistent with controlled polymerizations, and evolve bimodal molar mass distributions of PCHC (up to M n = 42 kg mol −1 ). The stoichiometric reaction between [LTiO i Pr] and tetraphenylphosphonium chloride, PPh 4 Cl, allows isolation of the putative catalytic intermediate [LTi(O i Pr)Cl] − , which is characterized using single-crystal X-ray diffraction techniques. The anionic titanium complex [LTi(OR)Cl] − is proposed as a model for the propagating alkoxide intermediates in the catalytic cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.