Background: Little data are available on the subject of gut microbiota composition in endurance athletes as well as connections between diet and specific bacteria abundance. However, most studies suggest that athletes' microbiota undergoes major alterations, which may contribute to increased physical performance. Therefore, we decided to investigate differences in gut microbiota between healthy controls and endurance athletes. Materials and methods: Stools samples were collected from 14 marathon runners, 11 crosscountry skiers and 46 sedentary healthy controls. The athletes' diet evaluation was performed with 24-h diet recall, using the Aliant programme. The 16S gene sequencing was performed using the Ion 16S Metagenomics Kit on Ion Torrent PGM sequencer. Taxonomic classification and diversity indices computation was performed with Mothur. Results: 20 and 5 taxa differentiated healthy controls from marathon runners and crosscountry skiers, respectively. Both groups presented a lowered abundance of major gut microbiota genus, Bacteroidetes and higher abundance of Prevotella. The athletes' microbiome was also more diverse in crosscountry skiers than the one of sedentary controls (Simpson index p-value at 0.025). Thirtyone strong correlations (Spearman's coefficient > 0.6) were uncovered between bacteria abundance and diet, including inverse correlation of Prevotella with sucrose intake, Phascolarctobacterium with polyunsaturated fatty acids as well as positive correlation of Christensenellaceae with folic acid intake and Agathobacter with fiber amount in diet. Conclusions: The excessive training associates with both differences in composition and promotion of higher bacterial diversity. Taxons enriched in athletes are known to participate in fiber fermentation.
Irritable bowel syndrome (IBS) is a chronic functional disorder and its development may be linked, directly and indirectly, to intestinal dysbiosis. Here we investigated the interactions between IBS symptoms and the gut microbiome, including the relation to rifaximin (1200 mg daily; 11.2 g per a treatment). We recruited 72 patients, including 31 with IBS-D (diarrhea), 11 with IBS-C (constipation), and 30 with IBS-M (mixed constipation and diarrhea) and 30 healthy controls (HCs). Of them, 68%, 64%, and 53% patients with IBS-D, IBS-C, and IBS-M, respectively, achieved 10–12 week-term improvement after the rifaximin treatment. Stool samples were collected before and after the treatment, and fecal microbiotic profiles were analyzed by deep sequencing of 16S rRNA, while stool metabolic profiles were studied by hydrogen 1-nuclear magnetic resonance (1H-NMR) and gas chromatography–mass spectrometry (GC-MS). Of 26 identified phyla, only Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria were consistently found in all samples. Bacteroidetes was predominant in fecal samples from HCs and IBS-D and IBS-M subjects, whereas Firmicutes was predominant in samples from IBS-C subjects. Species richness, but not community diversity, differentiated all IBS patients from HCs. Metabolic fingerprinting, using NMR spectra, distinguished HCs from all IBS patients. Thirteen metabolites identified by GC-MS differed HCs and IBS patients. However, neither metagenomics nor metabolomics analyses identified significant differences between patients with and without improvement after treatment.
Background and Aims The study investigates the practical utility of whole-blood gene expression profiling to diagnose inflammatory bowel diseases [IBDs]. Methods The discovery cohorts included 102 and 51 paediatric IBD patients and controls, and 95 and 46 adult IBD patients and controls, respectively. The replication cohorts included 447 and 76 paediatric IBD patients and controls, and 271 and 108 adult IBD patients and controls, respectively. In the discovery phase, RNA samples extracted from whole peripheral blood were analysed using RNA-Seq, and the predictive values of selected biomarkers were validated using quantitative polymerase chain reaction [qPCR]. Results In all, 15 differentially expressed transcripts [adjusted p ≤0.05] were selected from the discovery sequencing datasets. The receiver operating characteristic curves and area under the curve [ROC-AUC] in replication analyses showed high discriminative power [AUC range, 0.91–0.98] for 11 mRNAs in paediatric patients with active IBD. By contrast, the AUC-ROC values ranged from 0.63 to 0.75 in comparison among inactive paediatric IBDs and active/inactive adult IBDs, indicating a lack of discriminative power. The best multi-mRNA diagnostic classifier showed moderate discriminative power [AUC = 0.81] for paediatric inactive IBD, but was not able to discriminate active or inactive adult IBD patients from controls. The AUC-ROC values did not confirm an ability of the mRNAs abundances to discriminate between active ulcerative colitis and active Crohn’s disease in paediatric or adult populations. Conclusions This study identifies and validates blood transcriptional biomarkers that could be used in clinical settings as diagnostic predictors of IBD clinical activity in paediatric, but not adult, IBD patients.
BackgroundRecent advances in culture-independent approaches have enabled insights into the diversity, complexity, and individual variability of gut microbial communities.ObjectivesTo examine the effect of oral administration of Saccharomyces (S.) boulardii and mode of delivery on the intestinal microbial community in preterm infants.Study DesignStool samples were collected from preterm newborns randomly divided into two groups: a probiotic-receiving group (n = 18) or a placebo group (n = 21). Samples were collected before probiotic intake (day 0), and after 2 and 6 weeks of supplementation. The composition of colonizing bacteria was assessed by 16S ribosomal RNA (rRNA) gene sequencing of fecal samples using the Ion 16S Metagenomics Kit and the Ion Torrent Personal Genome Machine platform.ResultsA total of 11932257 reads were generated, and were clustered into 459, 187, and 176 operational taxonomic units at 0 days, 2 weeks, and 6 weeks, respectively. Of the 17 identified phyla, Firmicutes Actinobacteria, Proteobacteria, and Bacteroidetes were universal. The microbial community differed at day 0 compared with at 2 weeks and 6 weeks. There was a tendency for increased bacterial diversity at 2 weeks and 6 weeks compared with day 0, and infants with a gestational age of 31 weeks or higher presented increased bacterial diversity prior to S. boulardii administration. Firmicutes and Proteobacteria remained stable during the observation period, whereas Actinobacteria and Bacteroidetes increased in abundance, the latter particularly more sharply in vaginally delivered infants.ConclusionWhile the mode of delivery may influence the development of a microbial community, this study had not enough power to detect statistical differences between cohorts supplemented with probiotics, and in a consequence, to speculate on S. boulardii effect on gut microbiome composition in preterm newborns.
Most inflammatory bowel diseases (IBDs) are classic complex disorders represented by common alleles. Here we aimed to define the genetic architecture of pediatric and adult-onset IBDs for the Polish population. A total of 1495 patients were recruited, including 761 patients with Crohn’s disease (CD; 424 pediatric), 734 patients with ulcerative colitis (UC; 390 pediatric), and 934 healthy controls. Allelotyping employed a pooled-DNA genome-wide association study (GWAS) and was validated by individual genotyping. Whole exome sequencing (WES) was performed on 44 IBD patients diagnosed before 6 years of age, 45 patients diagnosed after 40 years of age, and 18 healthy controls. Altogether, out of 88 selected SNPs, 31 SNPs were replicated for association with IBD. A novel BRD2 (rs1049526) association reached significance of P = 5.2 × 10−11 and odds ratio (OR) = 2.43. Twenty SNPs were shared between pediatric and adult patients; 1 and 7 were unique to adult-onset and pediatric-onset IBD, respectively. WES identified numerous rare and potentially deleterious variants in IBD-associated or innate immunity-associated genes. Deleterious alleles in both groups were over-represented among rare variants in affected children. Our GWAS revealed differences in the polygenic architecture of pediatric- and adult-onset IBD. A significant accumulation of rare and deleterious variants in affected children suggests a contribution by yet unexplained genetic components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.