Basophils are key effector cells in atopic diseases, and the signaling sphingolipid Sphigosine-1-phosphate (S1P) is emerging as an important mediator in these conditions. The possible interaction of S1P and basophils and the resulting biological effects have not yet been studied. We hypothesize that S1P influences the function of basophils in atopy and aim to elucidate the modes of interaction. S1P receptor (S1PR) expression in human peripheral blood basophils from atopic and non-atopic patients was assessed through qRT-PCR and flow cytometry analysis. Functional effects of S1P were assessed through a basophil activation test (BAT), calcium flux, apoptosis, and chemotaxis assays. Immunofluorescence staining was performed to visualize intracellular S1P. Human basophils express S1PR1, S1PR2, S1PR3, and S1PR4 on the mRNA level. 0.1 µM S1P have anti-apoptotic, while 10 µM exhibits apoptotic effects on basophils. Basophils from atopic patients show less chemotactic activity in response to S1P than those from healthy donors. Protein expression of S1PR1 is downregulated in atopic patients, and basophils in lesional AD skin possess intracellular S1P. These findings suggest that the interaction of S1P and basophils might be an important factor in the pathophysiology of atopy.
S1P is a pleotropic sphingolipid signalling molecule that acts through binding to five high‐affinity G‐protein coupled receptors. S1P‐signaling affects cell fate in a multitude of ways, e.g. influencing cell differentiation, proliferation, and apoptosis, as well as playing an important role in immune cell trafficking. Though many effects of S1P‐signaling in the human body have been discovered, the full range of functions is yet to be understood. For inflammatory skin diseases such as atopic dermatitis and psoriasis, evidence is emerging that dysfunction and imbalance of the S1P‐axis is a contributing factor. Multiple studies investigating the efficacy of S1PR modulators in alleviating the severity and symptoms of skin conditions in various animal models and human clinical trials have shown promising results and validated the interest in the S1P‐axis as a potential therapeutic target. Even though the involvement of S1P‐signalling in inflammatory skin diseases still requires further clarification, the implications of the recent findings may prompt expansion of research to additional skin conditions and more S1P‐axis modulatory pharmaceuticals.
Allergic diseases are accompanied by a variety of symptoms such as pruritus, coughing, sneezing, and watery eyes, which can result in severe physiological and even psychological impairments. The exact mechanisms of these conditions are not yet completely understood. However, recent studies demonstrated a high relevance of neurotrophins in allergic inflammation, as they induce cytokine release, mediate interaction between immune cells and neurons, and exhibit different expression levels in health and disease. In this review, we aim to give an overview of the current state of knowledge concerning the role of neurotrophins in atopic disorders such as atopic dermatitis, allergic asthma, and allergic rhinitis.
Bullous pemphigoid (BP) is an autoimmune blistering skin disease, of which the incidence has increased in recent years. BP is characterized by circulating IgG and IgE autoantibodies against the hemidesmosomal proteins BP180 and BP230. Although autoantibodies trigger inflammatory cascades that lead to blister formation, effector cells and cell-mediated autoimmunity must also be considered as important factors in the pathogenesis of BP. The aim of this review is to outline the current knowledge on the role of eosinophils, basophils, and neutrophils in BP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.