The vaccine elicitation of broadly neutralizing antibodies against HIV-1 is a long-sought goal. We previously reported the amino-terminal eight residues of the HIV-1-fusion peptide (FP8) -when conjugated to the carrier protein, keyhole limpet hemocyanin (KLH) -to be capable of inducing broadly neutralizing responses against HIV-1 in animal models. However, KLH is a multi-subunit particle derived from a natural source, and its manufacture as a clinical product remains a challenge. Here we report the preclinical development of recombinant tetanus toxoid heavy chain fragment (rTTHC) linked to FP8 (FP8-rTTHC) as a suitable FP-conjugate vaccine immunogen. We assessed 16 conjugates, made by coupling the 4 most prevalent FP8 sequences with 4 carrier proteins: the aforementioned KLH and rttHc; the H. influenzae protein D (HiD); and the cross-reactive material from diphtheria toxin (CRM197). While each of the 16 FP8-carrier conjugates could elicit HIV-1-neutralizing responses, rTTHC conjugates induced higher FP-directed responses overall. A Sulfo-SIAB linker yielded superior results over an SM(PEG)2 linker but combinations of carriers, conjugation ratio of peptide to carrier, or choice of adjuvant (Adjuplex or Alum) did not significantly impact elicited FP-directed neutralizing responses in mice. Overall, SIAB-linked FP8-rTTHC appears to be a promising vaccine candidate for advancing to clinical assessment.The fusion peptide (FP) site of vulnerability on the HIV-1 envelope (Env) glycoprotein has recently been shown to be a promising vaccine target 1-3 . FP, a hydrophobic region of ~15 residues at the N terminus of the gp41 transmembrane glycoprotein, is an essential component of the HIV entry machinery 4 . FP embeds in the target cell membrane during the pre-hairpin intermediate stage of entry, where it serves to anchor the rearranging viral spike and to facilitate the merging of viral and cell membranes. The N-terminal portion of FP is solvent accessible and recognized by broadly neutralizing antibodies PGT151 5,6 , N123-VRC34.01 3 , and ACS202 7 . Because FP is a short linear peptide, it has low inherent immunogenicity due to its lack of helper T cell epitopes. Coupling peptides to highly immunogenic carrier proteins is a well-established approach for providing T cell help to peptide immunogens [8][9][10][11] . When the N-terminal 6-10 residues of FP are coupled to keyhole limpet hemocyanin (KLH), a standard protein carrier widely used in biotechnology, the resultant FP-KLH conjugate immunogens are able to induce broadly neutralizing FP-directed immune responses in mice, guinea pigs, and rhesus macaques 1,2,12 . Vaccine-induced FP-directed antibodies from mice or NHP neutralize up to 31% or 59%, respectively, of a cross-clade panel of 208 HIV-1 strains 2 .These results (illustrated in Fig. 1a) indicate FP coupled to a carrier protein to be a promising candidate immunogen. However, KLH is a multi-subunit metalloprotein derived from natural sources 13-15 with both sequence and glycan heterogeneity, which pose manufacturin...
A comparison between solution and gas phase modification of primary amine sites in model peptide cations with N-hydroxysuccinimide (NHS) ester reagents is presented. In all peptides, the site of modification in solution was directed to the N-terminus by conducting reactions at pH = 5 whereas, for the same peptides, a lysine residue was preferentially modified in the gas phase. The difference in pKa values of the N-terminus and ε-amino group of the lysine allows for a degree of control over sites of protonation of the peptides in aqueous solution. With removal of the dielectric and multiple charging of the peptide ions in the gas phase, the accommodation of excess charge can affect the preferred sites of reaction. Interaction of the lone pair of the primary nitrogen with a proton reduces its nucleophilicity and, as a result, its reactivity towards NHS-esters. While no evidence for reaction of the N-terminus with sulfo-NHS-acetate was noted in the model peptide cations, a charge inversion experiment using bis[sulfosuccinimidyl] suberate, a cross-linking reagent with two sulfo-NHS-ester functionalities, showed modification of the N-terminus. Hence, an unprotonated N-terminus can serve as a nucleophile to displace NHS, which suggests that its lack of reactivity with the peptide cations is likely due to the participation of the N-terminus in solvating excess charge.
N-hydroxysuccinimide (NHS) esters have been used for gas phase conjugation reactions with peptides at nucleophilic sites, such as primary amines (N-terminus, ε-amine of lysine) or guanidines, by forming amide bonds through a nucleophilic attack on the carbonyl carbon. The carboxylate has recently been found to also be a reactive nucleophile capable of initiating a similar nucleophilic attack to form a labile anhydride bond. The fragile bond is easily cleaved, resulting in an oxygen transfer from the carboxylate-containing species to the reagent, nominally observed as a water transfer. This reactivity is shown for both peptides and non-peptidic species. Reagents isotopically labeled with O18 were used to confirm reactivity. This constitutes an example of distinct differences in reactivity of carboxylates between the gas-phase, where they are shown to be reactive, and the solution-phase, where they are not regarded as reactive with NHS esters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.