The utilization of commercially available virtual reality (VR) environments has increased over the last decade. Motion sickness that is commonly reported while using VR devices is still prevalent and reported at a higher than acceptable rate. The virtual reality induced symptoms and effects (VRISE) are considered the largest barrier to widespread usage. Current measurement methods have uniform use across studies but are subjective and are not designed for VR. VRISE and other motion sickness symptom profiles are similar but not exactly the same. Common objective physiological and biomechanical as well as subjective perception measures correlated with VRISE should be used instead. Many physiological biomechanical and subjective changes evoked by VRISE have been identified. There is a great difficulty in claiming that these changes are directly caused by VRISE due to numerous other factors that are known to alter these variables resting states. Several theories exist regarding the causation of VRISE. Among these is the sensory conflict theory resulting from differences in expected and actual sensory input. Reducing these conflicts has been shown to decrease VRISE. User characteristics contributing to VRISE severity have shown inconsistent results. Guidelines of field of view (FOV), resolution, and frame rate have been developed to prevent VRISE. Motion-to-photons latency movement also contributes to these symptoms and effects. Intensity of content is positively correlated to VRISE, as is the speed of navigation and oscillatory displays. Duration of immersion shows greater VRISE, though adaptation has been shown to occur from multiple immersions. The duration of post immersion VRISE is related to user history of motion sickness and speed of onset. Cognitive changes from VRISE include decreased reaction time and eye hand coordination. Methods to lower VRISE have shown some success. Postural control presents a potential objective variable for predicting and monitoring VRISE intensity. Further research is needed to lower the rate of VRISE symptom occurrence as a limitation of use.
The Star Excursion Balance Test (SEBT) is a common assessment used across clinical and research settings to test dynamic standing balance. The primary measure of this test is maximal reaching distance performed by the non-stance limb. Response time (RT) is a critical cognitive component of dynamic balance control and the faster the RT, the better the postural control and recovery from a postural perturbation. However, the measure of RT has not been done in conjunction with SEBT, especially with musculoskeletal fatigue. The purpose of this study is to examine RT during a SEBT, creating a modified SEBT (mSEBT), with a secondary goal to examine the effects of muscular fatigue on RT during SEBT. Sixteen healthy young male and female adults [age: 20 ± 1 years; height: 169.48 ± 8.2 cm; weight: 67.93 ± 12.7 kg] performed the mSEBT in five directions for three trials, after which the same was repeated with a response time task using Blazepod™ with a random stimulus. Participants then performed a low-intensity musculoskeletal fatigue task and completed the above measures again. A 2 × 2 × 3 repeated measures ANOVA was performed to test for differences in mean response time across trials, fatigue states, and leg reach as within-subjects factors. All statistical analyses were conducted in JASP at an alpha level of 0.05. RT was significantly faster over the course of testing regardless of reach leg or fatigue state (p = 0.023). Trial 3 demonstrated significantly lower RT compared to Trial 1 (p = 0.021). No significant differences were found between fatigue states or leg reach. These results indicate that response times during the mSEBT with RT is a learned skill that can improve over time. Future research should include an extended familiarization period to remove learning effects and a greater fatigue state to test for differences in RT during the mSEBT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.