Lactic acid bacteria were examined for their ability to produce quinone compounds, which may include dietary sources of menaquinones. Isoprenyl quinones in bacterial cells grown in a synthetic medium were extracted and analyzed by thin layer chromatography. Lactococcus lactis ssp. cremoris (three strains), Lactococcus lactis ssp. lactis (two strains), and Leuconostoc lactis were selected as high producers of quinone that synthesized more than 230 nmol of quinones/g of dried cells. The quinones were presumed to be menaquinone-7 to -10 by high performance liquid chromatography. Precise molecular weights were determined by mass spectrometry for Lactococcus lactis ssp. cremoris YIT 2011 and Leuconostoc lactis YIT 3001 and identified as menaquinone-8 and -9 for the former and menaquinone-9 and -10 for the latter. Those strains, when grown either in reconstituted nonfat dry milk or a soymilk medium, produced a beneficial quantity for dietary supplement (i.e., 29 to 123 micrograms of menaquinones/L of the fermented medium).
Proteasomes are essential protease complexes that maintain cellular homeostasis, and aberrant proteasomal activity supports cancer development. The regulatory mechanisms and biological function of the ubiquitin-26S proteasome have been studied extensively, while those of the ubiquitin-independent 20S proteasome system remain obscure. Here, we show that the cap ’n’ collar (CNC) family transcription factor NRF3 specifically enhances 20S proteasome assembly in cancer cells and that 20S proteasomes contribute to colorectal cancer development through ubiquitin-independent proteolysis of the tumor suppressor p53 and retinoblastoma (Rb) proteins. The NRF3 gene is highly expressed in many cancer tissues and cell lines and is important for cancer cell growth. In cancer cells, NRF3 upregulates the assembly of the 20S proteasome by directly inducing the gene expression of the 20S proteasome maturation protein POMP. Interestingly, NRF3 knockdown not only increases p53 and Rb protein levels but also increases p53 activities for tumor suppression, including cell cycle arrest and induction of apoptosis. Furthermore, protein stability and cell viability assays using two distinct proteasome inhibitor anticancer drugs, the 20S proteasome inhibitor bortezomib and the ubiquitin-activating enzyme E1 inhibitor TAK-243, show that the upregulation of the NRF3-POMP axis leads to ubiquitin-independent proteolysis of p53 and Rb and to impaired sensitivity to bortezomib but not TAK-243. More importantly, the NRF3-POMP axis supports tumorigenesis and metastasis, with higher NRF3/POMP expression levels correlating with poor prognoses in patients with colorectal or rectal adenocarcinoma. These results suggest that the NRF3-POMP-20S proteasome assembly axis is significant for cancer development via ubiquitin-independent proteolysis of tumor suppressor proteins.
Proteasomes are protease complexes essential for cellular homeostasis, and their activity is crucial for cancer cell growth. However, the mechanism of how proteasome activity is maintained in cancer cells has remained unclear. The CNC family transcription factor NFE2L1 induces the expression of almost all proteasome-related genes under proteasome inhibition. Both NFE2L1 and its phylogenetically closest homolog, NFE2L3, are highly expressed in several types of cancer, such as colorectal cancer. Here, we demonstrate that NFE2L1 and NFE2L3 complementarily maintain basal proteasome activity in cancer cells. Double knockdown of NFE2L1 and NFE2L3 impaired basal proteasome activity in cancer cells and cancer cell resistance to a proteasome inhibitor anticancer drug, bortezomib, by significantly reducing the basal expression of seven proteasome-related genes: PSMB3, PSMB7, PSMC2, PSMD3, PSMG2, PSMG3, and POMP. Interestingly, the molecular basis behind these cellular consequences was that NFE2L3 repressed NFE2L1 translation by the induction of the gene encoding the translational regulator CPEB3, which binds to the NFE2L1 3′ untranslated region and decreases polysome formation on NFE2L1 mRNA. Consistent results were obtained from clinical analysis, wherein patients with cancer having tumors expressing higher levels of CPEB3/NFE2L3 exhibit poor prognosis. These results provide the novel regulatory mechanism of basal proteasome activity in cancer cells through an NFE2L3-CPEB3-NFE2L1 translational repression axis.
Summary
Lipids, such as cholesterol and fatty acids, influence cell signaling, energy storage, and membrane formation. Cholesterol is biosynthesized through the mevalonate pathway, and aberrant metabolism causes metabolic diseases. The genetic association of a transcription factor NRF3 with obesity has been suggested, although the molecular mechanisms remain unknown. Here, we show that NRF3 upregulates gene expression in SREBP2-dependent mevalonate pathway. We further reveal that NRF3 overexpression not only reduces lanosterol, a cholesterol precursor, but also induces the expression of the
GGPS1
gene encoding an enzyme in the production of GGPP from farnesyl pyrophosphate (FPP), a lanosterol precursor. NRF3 overexpression also enhances cholesterol uptake through RAB5-mediated macropinocytosis process, a bulk and fluid-phase endocytosis pathway. Moreover, we find that GGPP treatment abolishes NRF3 knockdown-mediated increase of neutral lipids. These results reveal the potential roles of NRF3 in the SREBP2-dependent mevalonate pathway for cholesterol uptake through macropinocytosis induction and for lipogenesis inhibition through GGPP production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.