In this article, we are concerned with a nondifferentiable minimax fractional programming problem. We derive the sufficient condition for an optimal solution to the problem and then establish weak, strong, and strict converse duality theorems for the problem and its dual problem under B-(p, r)-invexity assumptions. Examples are given to show that B-(p, r)-invex functions are generalization of (p, r)-invex and convex functions
This paper is concerned with a pair of second-order mixed symmetric dual programs involving nondifferentiable functions. Weak, strong, and converse duality theorems are proved for aforementioned pair using the notion of second-orderF-convexity/pseudoconvexity assumptions.
In this paper, a pair of Wolfe type second-order multiobjective symmetric dual programs involving nondifferentiable functions is formulated. Weak, strong and converse duality theorems are then established using the notion of second-order F-convexity assumptions. An example which is second-order F-convex but not convex is also illustrated. Further, special cases are discussed to show that this paper extends some known results of the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.