This study focused on investigating the effect of exogenously applied two quorum sensing molecules (tyrosol and farnesol) on the synthesis of bioactive metabolites (pigments, lactic acid, ethanol, and citric acid) in Monascus purpureus ATCC16365. None of the tested concentrations (62.5, 125, 250, and 500 µl/L) of farnesol affected the synthesis of metabolites as well as cell growth. As with farnesol application, none of the tested concentrations (3.45, 6.9, 13.8, and 27.6 mg/L) of tyrosol caused a significant change in the synthesis of lactic acid and citric acid as well as cell growth. Conversely, all of the tested concentrations of tyrosol increased pigment synthesis but reduced ethanol synthesis, compared with the control. Maximum increases (3.16‐, 2.68‐, and 2.87‐fold increase, respectively) in yellow, orange, and red pigment production were achieved, especially when 6.9‐mg/L tyrosol was added to the culture on day 3. On the contrary, 6.9‐mg/L tyrosol reduced the content of citrinin by approximately 51.5%. This is the first report on the effect of tyrosol and farnesol on the synthesis of Monascus metabolites. Due to potential properties, such as low price, nonhuman toxicity, promotion of pigment synthesis, and reduction in citrinin synthesis, tyrosol can be used as a novel inducer in the fermentative production of Monascus pigments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.