Human genomic information can yield more effective healthcare by guiding medical decisions. Therefore, genomics research is gaining popularity as it can identify potential correlations between a disease and a certain gene, which improves the safety and efficacy of drug treatment and can also develop more effective prevention strategies [1]. To reduce the sampling error and to increase the statistical accuracy of this type of research projects, data from different sources need to be brought together since a single organization does not necessarily possess required amount of data. In this case, data sharing among multiple organizations must satisfy strict policies (for instance, HIPAA and PIPEDA) that have been enforced to regulate privacy-sensitive data sharing. Storage and computation on the shared data can be outsourced to a third party cloud service provider, equipped with enormous storage and computation resources. However, outsourcing data to a third party is associated with a potential risk of privacy violation of the participants, whose genomic sequence or clinical profile is used in these studies. In this article, we propose a method for secure sharing and computation on genomic data in a semi-honest cloud server. In particular, there are two main contributions. Firstly, the proposed method can handle biomedical data containing both genotype and phenotype. Secondly, our proposed index tree scheme reduces the computational overhead significantly for executing secure count query operation. In our proposed method, the confidentiality of shared data is ensured through encryption, while making the entire computation process efficient and scalable for cutting-edge biomedical applications. We evaluated our proposed method in terms of efficiency on a database of Single-Nucleotide Polymorphism (SNP) sequences, and experimental results demonstrate that the execution time for a query of 50 SNPs in a database of 50,000 records is approximately 5 s, where each record contains 500 SNPs. And, it requires 69.7 s to execute the query on the same database that also includes phenotypes.
Genomic data hold salient information about the characteristics of a living organism. Throughout the past decade, pinnacle developments have given us more accurate and inexpensive methods to retrieve genome sequences of humans. However, with the advancement of genomic research, there is a growing privacy concern regarding the collection, storage and analysis of such sensitive human data. Recent results show that given some background information, it is possible for an adversary to reidentify an individual from a specific genomic data set. This can reveal the current association or future susceptibility of some diseases for that individual (and sometimes the kinship between individuals) resulting in a privacy violation. Regardless of these risks, our genomic data hold much importance in analyzing the well-being of us and the future generation. Thus, in this article, we discuss the different privacy and security-related problems revolving around human genomic data. In addition, we will explore some of the cardinal cryptographic concepts, which can bring efficacy in secure and private genomic data computation. This article will relate the gaps between these two research areas-Cryptography and Genomics.
Recent studies demonstrate that effective healthcare can benefit from using the human genomic information. Consequently, many institutions are using statistical analysis of genomic data, which are mostly based on genome-wide association studies (GWAS). GWAS analyze genome sequence variations in order to identify genetic risk factors for diseases. These studies often require pooling data from different sources together in order to unravel statistical patterns, relationships between genetic variants and diseases. Here, the primary challenge is to fulfill one major objective: accessing multiple genomic data repositories for collaborative research in a privacy-preserving manner. Due to the privacy concerns regarding the genomic data, multi-jurisdictional laws and policies of cross-border genomic data sharing are enforced among different countries. In this article, we present SAFETY, a hybrid framework, which can securely perform GWAS on federated genomic datasets using homomorphic encryption and recently introduced secure hardware component of Intel Software Guard Extensions to ensure high efficiency and privacy at the same time. Different experimental settings show the efficacy and applicability of such hybrid framework in secure conduction of GWAS. To the best of our knowledge, this hybrid use of homomorphic encryption along with Intel SGX is not proposed to this date. SAFETY is up to 4.82 times faster than the best existing secure computation technique.
BackgroundAdvances in DNA sequencing technologies have prompted a wide range of genomic applications to improve healthcare and facilitate biomedical research. However, privacy and security concerns have emerged as a challenge for utilizing cloud computing to handle sensitive genomic data.MethodsWe present one of the first implementations of Software Guard Extension (SGX) based securely outsourced genetic testing framework, which leverages multiple cryptographic protocols and minimal perfect hash scheme to enable efficient and secure data storage and computation outsourcing.ResultsWe compared the performance of the proposed PRESAGE framework with the state-of-the-art homomorphic encryption scheme, as well as the plaintext implementation. The experimental results demonstrated significant performance over the homomorphic encryption methods and a small computational overhead in comparison to plaintext implementation.ConclusionsThe proposed PRESAGE provides an alternative solution for secure and efficient genomic data outsourcing in an untrusted cloud by using a hybrid framework that combines secure hardware and multiple crypto protocols.
Machine learning applications are intensively utilized in various science fields, and increasingly the biomedical and healthcare sector. Applying predictive modeling to biomedical data introduces privacy and security concerns requiring additional protection to prevent accidental disclosure or leakage of sensitive patient information. Significant advancements in secure computing methods have emerged in recent years, however, many of which require substantial computational and/or communication overheads, which might hinder their adoption in biomedical applications. In this work, we propose SecureLR, a novel framework allowing researchers to leverage both the computational and storage capacity of Public Cloud Servers to conduct learning and predictions on biomedical data without compromising data security or efficiency. Our model builds upon homomorphic encryption methodologies with hardware-based security reinforcement through Software Guard Extensions (SGX), and our implementation demonstrates a practical hybrid cryptographic solution to address important concerns in conducting machine learning with public clouds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.