Summary
We introduce noncontact optical microscopy and optical scattering to characterize asphalt binder microstructure at temperatures ranging from 15°C to 85°C for two compositionally different asphalt binders. We benchmark optical measurements against rheometric measurements of the magnitude of the temperature‐dependent bulk complex shear modulus |G*(T)|. The main findings are: (1) Elongated (∼5 × 1 μm), striped microstructures (known from AFM studies as ‘bees’ because they resemble bumble‐bees) are resolved optically, found to reside primarily at the surface and do not reappear immediately after a single heating–cooling cycle. (2) Smaller (∼1 μm2) microstructures with no observable internal structure (hereafter dubbed ‘ants’), are found to reside primarily in the bulk, to persist after multiple thermal cycles and to scatter light strongly. Optical scattering from ‘ants’ decreases to zero with heating from 15°C to 65°C, but recovers completely upon cooling back to 15°C, albeit with distinct hysteresis. (3) Rheometric measurements of |G*(T)| reveal hysteresis that closely resembles that observed by optical scatter, suggesting that thermally driven changes in microstructure volume fraction cause corresponding changes in |G*(T)|.
We combined optical and atomic force microscopy to observe morphology and kinetics of microstructures that formed at free surfaces of unmodified pavement-grade 64-22 asphalt binders upon cooling from 150 • C to room temperature (RT) at 5 • C/min, and changes in these microstructures when the surface was terminated with a transparent solid (glass) or liquid (glycerol) over-layer. The main findings are: (1) At free binder surfaces, wrinkled microstructures started to form near the wax crystallization temperature (∼45 • C), then grew to ∼5 µm diameter, ∼25 nm wrinkle amplitude and 10-30% surface area coverage upon cooling to RT, where they persisted indefinitely without observable change in shape or density. (2) Glycerol coverage of the binder surface during cooling reduced wrinkled area and wrinkle amplitude three-fold compared to free binder surfaces upon initial cooling to RT; continued glycerol coverage at RT eliminated most surface microstructures within ∼4 hours.(3) No surface microstructures were observed to form at binder surfaces covered with glass. (4) Sub-micron bulk microstructures were observed by near-infrared microscopy beneath the surfaces of all binder samples, with size, shape and density independent of surface coverage. No tendency of such structures to float to the top or sink to the bottom of mm-thick samples was observed. (5) We attribute the dependence of surface wrinkling on surface coverage to variation in interface tension, based on a thin-film continuum mechanics model. arXiv:1905.12093v1 [cond-mat.soft]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.