Recent development and advancement of information and communication technologies facilitate people in different dimensions of life. Most importantly, in the healthcare industry, this has become more and more involved with the information and communication technology-based services. One of the most important services is monitoring of remote patients, that enables the healthcare providers to observe, diagnose and prescribe the patients without being physically present. The advantage of miniaturization of sensor technologies gives the flexibility of installing in, on or off the body of patients, which is capable of forwarding physiological data wirelessly to remote servers. Such technology is named as Wireless Body Area Network (WBAN). In this paper, WBAN architecture, communication technologies for WBAN, challenges and different aspects of WBAN are illustrated. This paper also describes the architectural limitations of existing WBAN communication frameworks. blueFurthermore, implementation requirements are presented based on IEEE 802.15.6 standard. Finally, as a source of motivation towards future development of research incorporating Software Defined Networking (SDN), Energy Harvesting (EH) and Blockchain technology into WBAN are also provided.
Recently, interest in Internet of Vehicles’ (IoV) technologies has significantly emerged due to the substantial development in the smart automobile industries. Internet of Vehicles’ technology enables vehicles to communicate with public networks and interact with the surrounding environment. It also allows vehicles to exchange and collect information about other vehicles and roads. IoV is introduced to enhance road users’ experience by reducing road congestion, improving traffic management, and ensuring the road safety. The promised applications of smart vehicles and IoV systems face many challenges, such as big data collection in IoV and distribution to attractive vehicles and humans. Another challenge is achieving fast and efficient communication between many different vehicles and smart devices called Vehicle-to-Everything (V2X). One of the vital questions that the researchers need to address is how to effectively handle the privacy of large groups of data and vehicles in IoV systems. Artificial Intelligence technology offers many smart solutions that may help IoV networks address all these questions and issues. Machine learning (ML) is one of the highest efficient AI tools that have been extensively used to resolve all mentioned problematic issues. For example, ML can be used to avoid road accidents by analyzing the driving behavior and environment by sensing data of the surrounding environment. Machine learning mechanisms are characterized by the time change and are critical to channel modeling in-vehicle network scenarios. This paper aims to provide theoretical foundations for machine learning and the leading models and algorithms to resolve IoV applications’ challenges. This paper has conducted a critical review with analytical modeling for offloading mobile edge-computing decisions based on machine learning and Deep Reinforcement Learning (DRL) approaches for the Internet of Vehicles (IoV). The paper has assumed a Secure IoV edge-computing offloading model with various data processing and traffic flow. The proposed analytical model considers the Markov decision process (MDP) and ML in offloading the decision process of different task flows of the IoV network control cycle. In the paper, we focused on buffer and energy aware in ML-enabled Quality of Experience (QoE) optimization, where many recent related research and methods were analyzed, compared, and discussed. The IoV edge computing and fog-based identity authentication and security mechanism were presented as well. Finally, future directions and potential solutions for secure ML IoV and V2X were highlighted.
The successful transformation of conventional power grids into Smart Grids (SG) will require robust and scalable communication network infrastructure. The SGs will facilitate bidirectional electricity flow, advanced load management, a self-healing protection mechanism and advanced monitoring capabilities to make the power system more energy efficient and reliable. In this paper SG communication network architectures, standardization efforts and details of potential SG applications are identified. The future deployment of real-time or near-real-time SG applications is dependent on the introduction of a SG compatible communication system that includes a communication protocol for cross-domain traffic flows within the SG. This paper identifies the challenges within the cross-functional domains of the power and communication systems that current research aims to overcome. The status of SG related machine to machine communication system design is described and recommendations are provided for diverse new and innovative traffic features.
The internet of reality or augmented reality has been considered a breakthrough and an outstanding critical mutation with an emphasis on data mining leading to dismantling of some of its assumptions among several of its stakeholders. In this work, we study the pillars of these technologies connected to web usage as the Internet of things (IoT) system's healthcare infrastructure. We used several data mining techniques to evaluate the online advertisement data set, which can be categorized as high dimensional with 1,553 attributes, and the imbalanced data set, which automatically simulates an IoT discrimination problem. The proposed methodology applies Fischer linear discrimination analysis (FLDA) and quadratic discrimination analysis (QDA) within random projection (RP) filters to compare our runtime and accuracy with support vector machine (SVM), K-nearest neighbor (KNN), and Multilayer perceptron (MLP) in IoT-based systems. Finally, the impact on number of projections was practically experimented, and the sensitivity of both FLDA and QDA with regard to precision and runtime was found to be challenging. The modeling results show not only improved accuracy, but also runtime improvements. When compared with SVM, KNN, and MLP in QDA and FLDA, runtime shortens by 20 times in our chosen data set simulated for a healthcare framework. The RP filtering in the preprocessing stage of the attribute selection, fulfilling the model's runtime, is a standpoint in the IoT industry.Index Terms: Data Mining, Random Projection, Fischer Linear Discriminant Analysis, Online Advertisement Dataset, Quadratic Discriminant Analysis, Feature Selection, Internet of Things.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.