Flavonoid compounds are strong antioxidant and antifungal agents but their applications are limited due to their poor dissolution and bioavailability. The use of nanotechnology in agriculture has received increasing attention, with the development of new formulations containing active compounds. In this study, kaempferol (KAE) was loaded into lecithin/chitosan nanoparticles (LC NPs) to determine antifungal activity compared to pure KAE against the phytopathogenic fungus Fusarium oxysporium to resolve the bioavailability problem. The influence of formulation parameters on the physicochemical properties of KAE loaded lecithin chitosan nanoparticles (KAE-LC NPs) were studied by using the electrostatic self-assembly technique. KAE-LC NPs were characterized in terms of physicochemical properties. KAE has been successfully encapsulated in LC NPs with an efficiency of 93.8 ± 4.28% and KAE-LC NPs showed good physicochemical stability. Moreover, in vitro evaluation of the KAE-LC NP system was made by the release kinetics, antioxidant and antifungal activity in a time-dependent manner against free KAE. Encapsulated KAE exhibited a significantly inhibition efficacy (67%) against Fusarium oxysporium at the end of the 60 day storage period. The results indicated that KAE-LC NP formulation could solve the problems related to the solubility and loss of KAE during use and storage. The new nanoparticle system enables the use of smaller quantities of fungicide and therefore, offers a more environmentally friendly method of controlling fungal pathogens in agriculture.
We present a surface-enhanced Raman probe (SERS) platform for the determination of a prohibited substance, recombinant erythropoietin (rEPO), in urine matrix, using nanoparticles as substrate. Rod-shaped gold nanoparticles (GNR) were modified with a Raman label and an antibody as SERS probe. We developed two SERS-based immunoassays for detection and quantification of rEPO in urine. In the first assay, rEPO was determined by a sandwich assay with gold surfaces and GNR. In the second assay, rEPO was extracted by using core shell-structured magnetic iron oxide gold nanoparticles, and again sandwich assay was performed by using GNR. We also demonstrated the ability of the proposed method to discriminate rEPO and urinary erythropoietin (uEPO). A good linear correlation was obtained between logarithms of rEPO concentrations in urine and Raman intensities within the range of 10-10 pg mL rEPO concentrations. Detection limits which are smaller than 0.1 pg mL levels were achieved owing to the high extractive performance of the nanoextraction techniques. Graphical Abstract Schematic represantation of surface-enhanced Raman probe for rapid nanoextraction and detection of erythropoietin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.