The increasing utilization of carbon fiber reinforced plastic (CFRP) in the aeronautical industry calls for a structural health monitoring (SHM) system for adhesively bonded CFRP joints. Optical glass fiber with inscribed fiber Bragg gratings (FBGs) is a promising technology for a SHM system. This paper investigates the intrusive effect of embedding optical glass fibers carrying FBGs on adhesive bond strength and adhesive layer thickness and quality. Embedding the optical glass fibers directly in the adhesive bond has the advantage of directly monitoring the targeted structure but poses the risk of significantly reducing the bond strength. Optical glass fibers with different cladding diameters (50, 80, 125 µm) and coating types (polyimide, with a thickness of 3−8 µm, and acrylate, with a thickness of ~35 µm) are embedded in structural and repair film adhesives here. Without embedded optical glass fibers, the film adhesives have an adhesive layer thickness of ~90 µm (structural) and ~100 µm (repair) after curing. The intrusive effect of the fiber embedding on the adhesive bond strength is investigated here with quasi static and fatigue single lap joint (SLJ) tensile shear tests. Also, the influence of hydrothermal aging procedures on the quasi static tensile shear strength is investigated. It is found that optical glass fibers with a total diameter (glass fiber cladding + coating) of ~145 µm significantly reduce the quasi static tensile shear strength and increase the adhesive layer thickness and number of air inclusions (or pores) in the structural film adhesive joints. In the repair adhesive joints, no significant reduction of quasi static tensile shear strength is caused by the embedding of any of the tested fiber types and diameters. However, an increase in the adhesive layer thickness is detected. In both adhesive films, no effect on the quasi-static tensile shear strength is detected when embedding optical glass fibers with total diameters <100 µm. The applied aging regime only affects the repair film adhesive joints, and the structural film adhesive joints show no significant reduction. A polyimide-coated 80 µm optical glass fiber is selected for fatigue SLJ tensile shear tests in combination with the more sensitive structural film adhesive. No significant differences between the S-N curves and tensile shear fatigue strength of the reference samples without embedded optical fibers and the samples carrying the polyimide-coated 80 µm optical glass fibers are detected. Thus, it is concluded that the influences of embedding optical glass fibers with total diameters <100 µm on the fatigue limit of the tested film adhesive joints is negligible.
In this chapter, we outline some perspectives on embracing the datasets gathered using Extended Non-destructive Testing (ENDT) during manufacturing or repair process steps within the life cycle of bonded products. Ensuring that the ENDT data and metadata are FAIR, i.e. findable, accessible, interoperable and re-usable, will support the relevant stakeholders in exploiting the contained material-related information far beyond a stop/go decision, while a shorter time-to-information will facilitate a prompter time-to-decision in process and product management. Exploiting the value of ENDT (meta)data will contribute to increased performance by integrating all defined, measured, analyzed and controlled aspects of material transformation across process and company boundaries. This will facilitate the optimization of manufacturing and repair operations, boosting their energy efficiency and productivity. In this regard, some aspects that are currently driving activities in the field of pre-process, in-process and post-process quality assessment will be addressed in the following. Furthermore, some requirements will be contemplated for harmonized and conjoint data transfer ranging from a bonded product’s beginning-of-life through its end-of-life, the customization of stand-alone or linked ENDT tools, and the implementation of sensor arrays and networks in joints, devices and structural parts to gather material-related data during a product’s middle-of-life application phase, thereby fostering structural health monitoring (SHM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.