SUMMARYFlow characteristics of an adiabatic capillary tube in a transcritical CO 2 heat pump system have been investigated employing the homogeneous model. The model is based on fundamental equations of mass, energy and momentum which are solved simultaneously. Two friction factor empirical correlations (Churchill, Lin et al., Int. J. Multiphase Flow 1991; 17(1):95-102) and four viscosity models (Mcadams, Cicchitti, Dukler and Lin) are comparatively used to investigate the flow characteristics. Choked condition at the outlet is also investigated for maximum mass flow rate. Subcritical and supercritical thermodynamic and transport properties of CO 2 are calculated employing a precision property code. Choice of viscosity model causes minor variation in results unlike in chlorofluorocarbons (CFCs) refrigerants.Relationships between cooling capacity with capillary tube diameter, length and maximum mass flow rate are presented. A lower evaporating temperature yields a larger cooling capacity due to the unique thermodynamic properties of CO 2 . It is also observed that an optimum cooling capacity exists for a specified capillary tube.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.