Oxidation of low-density lipoproteins (LDL) generates high concentrations of unsaturated aldehydes, such as 4-hydroxy trans-2-nonenal (HNE). These aldehydes are mitogenic to vascular smooth muscle cells and sustain a vascular inflammation. Nevertheless, the processes that mediate and regulate the vascular metabolism of these aldehydes have not been examined. In this communication, we report the identification of the major metabolic pathways and products of [ 3 H]-HNE in rat aortic smooth muscle cells in culture. High-performance liquid chromatography separation of the radioactivity recovered from these cells revealed that a large (60-65%) proportion of the metabolism was linked to glutathione (GSH). Electrospray mass spectrometry showed that glutathionyl-1,4 dihydroxynonene (GS-DHN) was the major metabolite of HNE in these cells. The formation of GS-DHN appears to be due aldose reductase (AR)-catalyzed reduction of glutathionyl 4-hydroxynonanal (GS-HNE), since inhibitors of AR (tolrestat or sorbinil) prevented GS-DHN formation, and increased the fraction of the glutathione conjugate remaining as GS-HNE. Gas chromatography-chemical ionization mass spectroscopy of the metabolites identified a subsidiary route of HNE metabolism leading to the formation of 4-hydroxynonanoic acid (HNA). Oxidation to HNA accounted for 25-30% of HNE metabolism. The formation of HNA was inhibited by cyanamide, indicating that the acid is derived from an aldehyde dehydrogenase (ALDH)-catalyzed pathway. The overall rate of HNE metabolism was insensitive to inhibition of AR or ALDH, although inhibition of HNA formation by cyanamide led to a corresponding increase in the fraction of HNE metabolized by the GSH-linked pathway, indicating that ALDH-catalyzed oxidation competes with glutathione conjugation. These metabolic pathways may be the key regulators of the vascular effects of HNE and oxidized LDL.
Background-Sporadic breast cancer like many other cancers is proposed to be a manifestation of abnormal genetic and epigenetic changes. For the past decade our laboratory has identified genes involved in DNA damage response (DDR), apoptosis and immunesurvelliance pathways to influence sporadic breast cancer risk in north Indian population. Further to enhance our knowledge at the epigenetic level, we performed DNA methylation study involving 17 gene promoter regions belonging to DNA damage response (DDR) and death receptor apoptotic pathway in 162 paired normal and cancerous breast tissues from 81 sporadic breast cancer patients, using a high throughput quantitative DNA methylation analysis technology.Results-The study identified five genes with statistically significant difference between normal and tumor tissues. Hypermethylation of DR5 (P = 0.001), DCR1 (P = 0.00001), DCR2 (P = 0.0000000005) and BRCA2 (P = 0.007) and hypomethylation of DR4 (P = 0.011) in sporadic breast tumor tissues suggested a weak/aberrant activation of the DDR/apoptotic pathway in breast tumorigenesis. Negative correlation was observed between methylation status and transcript expression levels for TRAIL, DR4, CASP8, ATM, CHEK2, BRCA1 and BRCA2 CpG sites. Categorization of the gene methylation with respect to the clinicopathological parameters showed an increase in aberrant methylation pattern in advanced tumors. These uncharacteristic methylation patterns corresponded with decreased death receptor apoptosis (P = 0.047) and DNA damage repair potential (P = 0.004) in advanced tumors. The observation of BRCA2 -26 G/A 5'UTR polymorphism concomitant with the presence of methylation in the promoter region was novel and emerged as a strong candidate for susceptibility to sporadic breast tumors.Conclusion-Our study indicates that methylation of DDR-apoptotic gene promoters in sporadic breast cancer is not a random phenomenon. Progressive epigenetic alterations in advancing tumors result in aberrant DDR-apoptotic pathway thereby promoting tumor development. We propose, since pathological epigenetic changes of the DDR-apoptotic genes are reversible modifications, these could further be targeted for therapeutic interventions.
Recently, TRAIL function has been elucidated beyond its known classical role of mediating cellular homeostasis and immune surveillance against transformed cells. Here, we show how CC genotype of -716 TRAIL promoter SNP rendered risk for sporadic breast cancer as compared to the CT and TT genotypes (P (recessive model) = 0.018, OR = 1.4, 95% CI = 1.1-1.9; P (allele model) = 0.010, OR = 1.3, 95% CI = 1.1-1.7). The in silico prediction of the introduction of core Sp1/Sp3-binding motif suggested the functional significance of the SNP variation. This functional implication was validated by luciferase assay in HeLa (P = 0.026), MCF-7 (P = 0.022), HepG2 (P = 0.024), and HT1080 (P = 0.030) cells and also by real-time expression studies on tumor tissues (P = 0.01), revealing the transcriptionally repressed status of -716 T when compared to -716 C allele. The SNP-SNP interactions reflected an enhanced protective effect of CT and TT genotypes with the protective genetic backgrounds of TP53-BRCA2 (P = 0.002, OR = 0.2, 95% CI = 0.1-0.6), IFNG (P = 0.0000002, OR = 0.3, 95% CI = 0.2-0.4), and common variant Casp8 (P = 0.0003, OR = 0.5, 95% CI = 0.3-0.7). Interestingly, a comparison with clinical parameters showed overrepresented CT and TT genotypes in progressing (P = 0.041) and ER/PR negative tumors (P = 0.024/0.006). This was explained by increased apoptotic index, calculated as a ratio of selected pro-apoptotic and anti-apoptotic gene expression profiles, in CC genotyped tumors, favoring either intrinsic (P = 0.008,0.018) or extrinsic (P = 0.025,0.217) pathway depending upon the ER/PR status. Our study reveals for the first time that a promoter SNP of TRAIL functionally modulates the gene and consequently its role in breast cancer pathogenesis, cautioning to consider the -716 TRAIL SNP status in patients undergoing TRAIL therapy.
Objectives This is an open-label randomized control trial with a parallel assignment with single masking comparing patients undergoing coronary angiography via dorsal radial and classical radial access. Methods Study done at three tertiary cardiac care centers for two years. A total of 970 patients were finally recruited for the study. Patients were randomly selected for dorsal radial artery access Group A (485 patients) and classical radial artery access Group B (485 patients) without any bias for age & sex. Results On comparative assessment both techniques are found to be equal in terms of procedural success rate. While dorsal access was superior in terms of fewer incidences of forearm radial artery occlusion, radial artery spasm, less post-procedure persistence of pain, and hand clumsiness. In comparison to this, the number of puncture attempts and time to achieve post-procedure hemostasis is less in classical radial access. Conclusion So both techniques have pros and coins and it is the discretion of interventionists to adopt which technique.
The principle of near-infrared incoherent broadband cavity enhanced absorption spectroscopy was employed to develop a novel instrument for detecting natural gas leaks as well as for testing the quality of natural gas mixtures. The instrument utilizes the absorption features of methane, butane, ethane, and propane in the wavelength region of 1100 nm to 1250 nm. The absorption cross-section spectrum in this region for methane was adopted from the HITRAN database, and those for the other three gases were measured in the laboratory. A singular-value decomposition (SVD) based analysis scheme was employed for quantifying methane, butane, ethane, and propane by performing a linear least-square fit. The developed instrument achieved a detection limit of 460 ppm, 141 ppm, 175 ppm and 173 ppm for methane, butane, ethane, and propane, respectively, with a measurement time of 1 second and a cavity length of 0.59 m. These detection limits are less than 1% of the Lower Explosive Limit (LEL) for each gas. The sensitivity can be further enhanced by changing the experimental parameters (such as cavity length, lamp power etc.) and using longer averaging intervals. The detection system is a low-cost and portable instrument suitable for performing field monitorings. The results obtained on the gas mixture emphasize the instrument's potential for deployment at industrial facilities dealing with natural gas, where potential leaks pose a threat to public safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.