Temperature-induced, rapid changes in the viscosity and reproducible 3-D structure formation makes thermos-sensitive hydrogels an ideal delivery system to act as a cell scaffold or a drug reservoir. Moreover, the hydrogels’ minimum invasiveness, high biocompatibility, and facile elimination from the body have gathered a lot of attention from researchers. This review article attempts to present a complete picture of the exhaustive arena, including the synthesis, mechanism, and biomedical applications of thermosensitive hydrogels. A special section on intellectual property and marketed products tries to shed some light on the commercial potential of thermosensitive hydrogels.
Quercetin, a flavonoid, has antioxidant and anti-inflammatory properties and the potential to inhibit the proliferation of cancer, but its therapeutic efficacy is lowered due to poor solubility and bioavailability. Quercetin-loaded nanocochleates (QN) were developed using a trapping method by the addition of calcium ions into preformed negatively charged liposomes (QL) prepared by a thin-film hydration method. Liposomes were optimized by varying the concentration of Dimyristoyl phosphatidyl glycerol and quercetin by applying D-optimal factorial design using Design-Expert® software. Stable rods were observed using TEM with an average particle size, zeta potential and encapsulation efficiency of 502 nm, −18.52 mV and 88.62%, respectively, for QN which were developed from spherical QL showing 111.06 nm, −40.33 mV and 74.2%, respectively. In vitro release of quercetin from QN and QL was extended to 24 h. Poor bioavailability of quercetin is due to its degradation in the liver, so to mimic in vivo conditions, the degradation of quercetin released from QL and QN was studied in the presence of rat liver homogenate (S9G) and results revealed that QN, due to its unique structure, i.e., series of rolled up solid layers, shielded quercetin from the external environment and protected it. The safety and biocompatibility of QL and QN were provenby performing cytotoxicity studies on fibroblast L929 cell lines. QN showed superior anticancer activity compared to QL, as seen for human mouth cancerKB cell lines. Stability studies proved that nanocochleates were more stable than liposomal formulations. Thus, nanocochleates might serve as pharmaceutical nanocarriers for the improved efficacy of drugs with low aqueous solubility, poor bioavailability, poor targeting ability and stability.
Thiolation of polymers is one of the most appropriate approaches to impart higher mechanical strength and mucoadhesion. Thiol modification of gum karaya and gum acacia was carried out by esterification with 80% thioglycolic acid. FTIR, DSC and XRD confirmed the completion of thiolation reaction. Anticancer potential of developed thiomer was studied on cervical cancer cell lines (HeLa) and more than 60% of human cervical cell lines (HeLa) were inhibited at concentration of 5 µg/100 µL. Immobilized thiol groups were found to be 0.8511 mmol/g as determined by Ellman’s method. Cytotoxicity studies on L929 fibroblast cell lines indicated thiomers were biocompatible. Bilayered tablets were prepared using Ivabradine hydrochloride as the model drug and synthesized thiolated gums as mucoadhesive polymer. Tablets prepared using thiolated polymers in combination showed more swelling, mucoadhesion and residence time as compared to unmodified gums. Thiol modification controlled the release of the drug for 24 h and enhanced permeation of the drug up to 3 fold through porcine buccal mucosa as compared to tablets with unmodified gums. Thiolated polymer showed increased mucoadhesion and permeation, anticancer potential, controlled release and thus can be utilized as a novel excipient in formulation development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.