BackgroundCancer cachexia is a multifactorial syndrome that dramatically decreases survival. Loss of white adipose tissue (WAT) is one of the key characteristics of cachexia. WAT wasting is paralleled by microarchitectural remodeling in cachectic cancer patients. Fibrosis results from uncontrolled ECM synthesis, a process in which, transforming growth factor-beta (TGFβ) plays a pivotal role. So far, the mechanisms involved in adipose tissue (AT) re-arrangement, and the role of TGFβ in inducing AT remodeling in weight-losing cancer patients are poorly understood. This study examined the modulation of ECM components mediated by TGFβ pathway in fibrotic AT obtained from cachectic gastrointestinal cancer patients.MethodsAfter signing the informed consent form, patients were enrolled into the following groups: cancer cachexia (CC, n = 21), weight-stable cancer (WSC, n = 17), and control (n = 21). The total amount of collagen and elastic fibers in the subcutaneous AT was assessed by histological analysis and by immunohistochemistry. TGFβ isoforms expression was analyzed by Multiplex assay and by immunohistochemistry. Alpha-smooth muscle actin (αSMA), fibroblast-specific protein (FSP1), Smad3 and 4 were quantified by qPCR and/or by immunohistochemistry. Interleukin (IL) 2, IL5, IL8, IL13 and IL17 content, cytokines known to be associated with fibrosis, was measured by Multiplex assay.ResultsThere was an accumulation of collagen and elastic fibers in the AT of CC, as compared with WSC and controls. Collagens type I, III, VI, and fibronectin expression was enhanced in the tissue of CC, compared with both WSC and control. The pronounced expression of αSMA in the surrounding of adipocytes, and the increased mRNA content for FSP1 (20-fold) indicate the presence of activated myofibroblasts; particularly in CC. TGFβ1 and TGFβ3 levels were up-regulated by cachexia in AT, as well in the isolated adipocytes. Smad3 and Smad4 labeling was found to be more evident in the fibrotic areas of CC adipose tissue.ConclusionsCancer cachexia promotes the development of AT fibrosis, in association with altered TGFβ signaling, compromising AT organization and function.
BackgroundCancer cachexia (CC) is a multifactorial syndrome, often irreversible, that affects patients with cancer influenced, in part, by the inflammatory condition. Peritumoural adipose tissue produces adipokines and angiogenic, apoptotic, and growth factors; given the possible crosstalk between the peritumoural adipose tissue and tumour, these may play an important role in cancer biology and carcinogenesis.MethodsThe aim of this study was to evaluate the factors produced by peritumoural adipose tissue in a cohort of 16 colorectal cancer patients with either weight‐stable cancer (WSC; n = 7) or CC (n = 9). The study was approved by the Ethics Research Committee (972.914). Samples of peritumoural adipose tissue were analysed for concentrations of TNF‐α, IL‐1β, STAT‐1, STAT‐3, RANTES, IL‐1Ra, IP‐10, IL‐15, MCP‐1, IFN‐α, GCSF, FADD, and TGF‐β. The cytokines and proteins were measured using Multiplex. Correlations between the proteins and cytokines were evaluated.ResultsTNF‐α, STAT‐1, and FADD, a factor involved in apoptosis, were significantly higher in CC group than in the WSC group. In the peritumoural adipose tissue of the CC group, RANTES showed a significant positive correlation with IL‐1Ra and IP‐10 and a negative correlation with IFN‐α; and GCSF showed significant negative correlations with IL‐1Ra, IP‐10, IL‐15, and MCP‐1 and a positive correlation with IFN‐α. In the peritumoural adipose tissue of the WSC group, no significant correlations were detected between RANTES, GCSF, IL‐3, FADD, and STAT‐1 and the cytokines/chemokines analysed.ConclusionsThese results indicated that inflammatory and tumorigenic pathways were altered in peritumoural adipose tissue in CC. Furthermore, inflammatory cytokines were correlated with growth factors in the peritumoural adipose tissue of cachectic patients, suggesting that inflammatory cytokines modulated the proliferative environment closely linked to the tumour.
The rapid increase in the number of individuals with obesity, over the past four decades, is triggered by a number of complex interactions among factors. Despite the plethora of treatments available, side effects are commonly observed and, in this context, herbal medicines have been employed as an alternative form of therapy. Ginkgo biloba extract (GbE) has been described as a promising new pharmacological approach to treat obesity. In order to better comprehend the mechanisms involved with this potential effect, the present study evaluated the effects of GbE treatment on diet-induced obese rats, focusing on the proteome and the oxidative stress defense system of visceral adipose tissue. After 14 days treatment, GbE significantly modulated 25 proteins. Retroperitoneal adipose tissue of treated animals exhibited higher amounts of proteins associated with adipogenesis (decorin), carbon metabolism and mitochondrial function (citrate synthase), and a concomitant reduction in adipocyte hypertrophy. In parallel, GbE down-regulated proteins involved in oxidative stress (peroxiredoxin) and the inflammatory response (complement C3, mast cell protease 1, and Ig gamma-2B chain C region). Moreover, also related to oxidative stress defense, GbE stimulated catalase activity, reduced malondialdehyde levels (lipid peroxidation indicator), and increased lactoylglutathione lyase levels. It was concluded that GbE acts as an antioxidant agent, and improved the proteome profile and oxidative stress response in the adipose tissue of diet-induced obese rats.
IntroductionGreen tea extract has anti-inflammatory and antioxidant effects which improve dyslipidemia and decrease adipose tissue depots associated with hyperlipidic diet consumption.ObjectiveTo evaluate the effect of green tea extract consumption by rats during pregnancy and lactation on the metabolism of their offspring that received control or high-fat diet with water during 10 weeks after weaning.MethodsWistar rats received water (W) or green tea extract diluted in water (G) (400 mg/kg body weight/day), and control diet (10 animals in W and G groups) during pregnancy and lactation. After weaning, offspring received water and a control (CW) or a high-fat diet (HW), for 10 weeks. One week before the end of treatment, oral glucose tolerance test was performed. The animals were euthanized and the samples were collected for biochemical, hormonal and antioxidant enzymes activity analyses. In addition, IL-10, TNF-α, IL-6, and IL-1β were quantified by ELISA while p-NF-κBp50 was analyzed by Western Blotting. Repeated Measures ANOVA, followed by Tukey's test were used to find differences between data (p < 0.05).ResultsThe consumption of high-fat diet by rats for 10 weeks after weaning promoted hyperglycemia and hyperinsulinemia, and increased fat depots. The ingestion of a high-fat diet by the offspring of mothers who consumed green tea extract during pregnancy and lactation decreased the inflammatory cytokines in adipose tissue, while the ingestion of a control diet increased the same cytokines.ConclusionOur results demonstrate that prenatal consumption of green tea associated with consumption of high-fat diet by offspring after weaning prevented inflammation. However, maternal consumption of the green tea extract induced a proinflammatory status in the adipose tissue of the adult offspring that received the control diet after weaning.
This study tested the effects of ovariectomy, allied or not to high-fat feeding and estradiol replacement, on hormonal, metabolic and behavioral parameters, to explore the connection of obesity and depression after menopause. Wistar rats were either ovariectomized or sham-operated and fed with either standard chow or lard-enriched diet for twelve weeks. Sub-groups of ovariectomized rats received estradiol replacement. Depressive-like behaviors were assessed by the forced swim test and locomotor activity was assessed by the elevated plus maze test. Ovariectomy alone increased body weight gain and feed efficiency and induced hyperleptinemia and glucose intolerance while it increased caloric intake and body adiposity only marginally. High-fat intake alone induced obesity and, in combination with ovariectomy, accentuated the ovariectomy-induced alterations. Estradiol replacement attenuated the hormonal alterations only in chow-fed rats. Ovariectomy combined with high-fat intake induced depressive-like behaviors, which were marginally attenuated by estradiol. Depressive-like behaviors were associated with metabolic and body composition parameters and with estrogen status. The data indicate that the vulnerability to develop depression after menopause is influenced by high-fat intake. It is suggested that weight management is a crucial issue in postmenopausal women, probably having a beneficial role in preventing the appearance of mental health problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.