Patients with semantic aphasia have impaired control of semantic retrieval, often accompanied by executive dysfunction following left hemisphere stroke. Many but not all of these patients have damage to the left inferior frontal gyrus, important for semantic and cognitive control. Yet semantic and cognitive control networks are highly distributed, including posterior as well as anterior components. Accordingly, semantic aphasia might not only reflect local damage but also white matter structural and functional disconnection. Here, we characterise the lesions and predicted patterns of structural and functional disconnection in individuals with semantic aphasia and relate these effects to semantic and executive impairment. Impaired semantic cognition was associated with infarction in distributed left-hemisphere regions, including in the left anterior inferior frontal and posterior temporal cortex. Lesions were associated with executive dysfunction within a set of adjacent but distinct left frontoparietal clusters. Performance on executive tasks was also associated with interhemispheric structural disconnection across the corpus callosum. In contrast, poor semantic cognition was associated with small left-lateralized structurally disconnected clusters, including in the left posterior temporal cortex. Little insight was gained from functional disconnection symptom mapping. These results demonstrate that while left-lateralized semantic and executive control regions are often damaged together in stroke aphasia, these deficits are associated with distinct patterns of structural disconnection, consistent with the bilateral nature of executive control and the left-lateralized yet distributed semantic control network.
According to a constructionist model of emotion, conceptual knowledge plays a foundational role in emotion perception; reduced availability of relevant conceptual knowledge should therefore impair emotion perception. Conceptual deficits can follow both degradation of semantic knowledge (e.g., semantic 'storage' deficits in semantic dementia) and deregulation of retrieval (e.g., semantic 'access' deficits in semantic aphasia). While emotion recognition deficits are known to accompany degraded conceptual knowledge, less is known about the impact of semantic access deficits. Here, we examined emotion perception and categorization tasks in patients with semantic aphasia, who have difficulty accessing semantic information in a flexible and controlled fashion following left hemisphere stroke. In Study 1, participants were asked to sort faces according to the emotion they portrayedwith numbers, written labels and picture examples each provided as category anchors across tasks.Semantic aphasia patients made more errors and showed a larger benefit from word anchors that reduced the need to internally constrain categorization than comparison participants.They successfully sorted portrayals that differed in valence (positive vs. negative) but had difficulty categorizing different negative emotions. They were unimpaired on a control task that involved sorting faces by identity. In Study 2, participants matched facial emotion portrayals to written labels following vocal emotion prosody cues, miscues, or no cues.Patients presented with overall poorer performance and benefited from cue trials relative to within-valence miscue trials. This same effect was seen in comparison participants, who also showed deleterious effects of within-valence miscue relative to no cue trials. Overall, we found that patients with deregulated semantic retrieval have deficits in emotional perception but that word anchors and cue conditions can facilitate emotion perception by increasing access to relevant emotion concepts and reducing reliance on semantic control. Semantic control may be of particular importance in emotion perception when it is necessary to interpret ambiguous inputs, or when there is interference between conceptually similar emotional states. These findings extend constructionist accounts of emotion to encompass difficulties in controlled semantic retrieval.
Eye-tracking research on social attention in infants and toddlers has included heterogeneous stimuli and analysis techniques. This allows measurement of looking to inner facial features under diverse conditions but restricts across-study comparisons. Eye–mouth index (EMI) is a measure of relative preference for looking to the eyes or mouth, independent of time spent attending to the face. The current study assessed whether EMI was more robust to differences in stimulus type than percent dwell time (PDT) toward the eyes, mouth, and face. Participants were typically developing toddlers aged 18–30 months ( N = 58). Stimuli were dynamic videos with single and multiple actors. It was hypothesized that stimulus type would affect PDT to the face, eyes, and mouth, but not EMI. Generalized estimating equations demonstrated that all measures including EMI were influenced by stimulus type. Nevertheless, planned contrasts suggested that EMI was more robust than PDT when comparing heterogeneous stimuli. EMI may allow for a more robust comparison of social attention to inner facial features across eye-tracking studies.
Patients with semantic aphasia have impaired control of semantic retrieval, often accompanied by executive dysfunction following left hemisphere stroke. Many but not all of these patients have damage to the left inferior frontal gyrus, important for semantic and cognitive control. Yet semantic and cognitive control networks are highly distributed, including posterior as well as anterior components. Accordingly, semantic aphasia might not only reflect local damage but also white matter structural and functional disconnection. Here we characterise the lesions and predicted patterns of structural and functional disconnection in individuals with semantic aphasia and relate these effects to semantic and executive impairment. Impaired semantic cognition was associated with infarction in distributed left- hemisphere regions, including in the left anterior inferior frontal and posterior temporal cortex. Lesions were associated with executive dysfunction within a set of adjacent but distinct left frontoparietal clusters. Performance on executive tasks was also associated with interhemispheric structural disconnection across the corpus callosum. Poor semantic cognition was associated with small left-lateralized structurally disconnected clusters, including in the left posterior temporal cortex. These results demonstrate that while left- lateralized semantic and executive control regions are often damaged together in stroke aphasia, these deficits are associated with distinct patterns of structural disconnection, consistent with the bilateral nature of executive control and the left-lateralized yet distributed semantic control network.
Recent insights show that increased motivation can benefit executive control, but this effect has not been explored in relation to semantic cognition. Patients with deficits of controlled semantic retrieval in the context of semantic aphasia (SA) after stroke may benefit from this approach since ‘semantic control’ is considered an executive process. Deficits in this domain are partially distinct from the domain‐general deficits of cognitive control. We assessed the effect of both extrinsic and intrinsic motivation in healthy controls and SA patients. Experiment 1 manipulated extrinsic reward using high or low levels of points for correct responses during a semantic association task. Experiment 2 manipulated the intrinsic value of items using self‐reference, allocating pictures of items to the participant (‘self’) or researcher (‘other’) in a shopping game before participants retrieved their semantic associations. These experiments revealed that patients, but not controls, showed better performance when given an extrinsic reward, consistent with the view that increased external motivation may help ameliorate patients’ semantic control deficits. However, while self‐reference was associated with better episodic memory, there was no effect on semantic retrieval. We conclude that semantic control deficits can be reduced when extrinsic rewards are anticipated; this enhanced motivational state is expected to support proactive control, for example, through the maintenance of task representations. It may be possible to harness this modulatory impact of reward to combat the control demands of semantic tasks in SA patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.