In this paper we derive a hierarchy of differential equations which uniquely determine the coefficients in the asymptotic expansion, for large N , of the logarithm of the partition function of N × N Hermitian random matrices. These coefficients are generating functions for graphical enumeration on Riemann surfaces. The case that we particularly consider is for an underlying measure that differs from the Gaussian weight by a single monomial term of degree 2ν. The coupling parameter for this term plays the role of the independent dynamical variable in the differential equations. From these equations one may deduce functional analytic characterizations of the coefficients in the asymptotic expansion. Moreover, this ode system can be solved recursively to explicitly construct these coefficients as functions of the coupling parameter. This analysis of the fine structure of the asymptotic coefficients can be extended to multiple coupling parameters and we present a limited illustration of this for the case of two parameters.
The work in this paper pertains to the solutions of Nahm's equations, which arise in the Atiyah-Drinfield-Hitchin-Manin-Nahm construction of solutions to the BogomoΓnyi equations for static monopoles. This paper provides an explicit construction of the solution of Nahm's equations which satisfy regularity and reality conditions. The Lax form of Nahm's equations is reduced to a standard eigenvalue problem by a special gauge transformation. These equations may then be solved by the method of Baker-Krichever. This leads to a compact representation of the solutions of Nahm's equations. The regularity condition is shown to be related to the monodromy of the gauge reduced linear operator. Hitchin showed that the solutions of Nahm's equations can be characterized by an algebraic curve and some data on that curve. Here, this characterization reduces to a transcendental equation involving certain loop integrals of a meromorphic differential. Donaldson coordinatized the moduli space of fc-monopoles by a class of rational maps from the Riemann sphere to itself. The data of a Baker function is equivalent to this map. This method gives an "apriori" construction of the (known) two monopole solutions. We also give a generalization of the two monopole solution to a class of elliptic solutions of arbitrary charge. These solutions correspond to reducible curves with elliptic components and the associated Donaldson rational function has a simple partial fraction expansion.
We investigate the typical cycle lengths, the total number of cycles, and the
number of finite cycles in random permutations whose probability involves cycle
weights. Typical cycle lengths and total number of cycles depend strongly on
the parameters, while the distributions of finite cycles are usually
independent Poisson random variables.Comment: 22 pages, 2 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.