The family Picornaviridae comprises small non-enveloped viruses with RNA genomes of 6.7 to 10.1 kb, and contains >30 genera and >75 species. Most of the known picornaviruses infect mammals and birds, but some have also been detected in reptiles, amphibians and fish. Many picornaviruses are important human and veterinary pathogens and may cause diseases of the central nervous system, heart, liver, skin, gastrointestinal tract or upper respiratory tract. Most picornaviruses are transmitted by the faecal–oral or respiratory routes. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Picornaviridae, which is available at www.ictv.global/report/picornaviridae.
The complete genome sequence of Seneca Valley virus-001 (SVV-001), a small RNA virus, was determined and was shown to have typical picornavirus features. The 7280 nt long genome was predicted to contain a 59 untranslated region (UTR) of 666 nt, followed by a single long open reading frame consisting of 6543 nt, which encodes a 2181 aa polyprotein. This polyprotein could potentially be cleaved into 12 polypeptides in the standard picornavirus L-4-3-4 layout. A 39 UTR of 71 nt was followed by a poly(A) tail of unknown length. Comparisons with other picornaviruses showed that the P1, 2C, 3C and 3D polypeptides of SVV-001 were related most closely to those of the cardioviruses, although they were not related as closely to those of encephalomyocarditis virus and Theiler's murine encephalomyelitis virus as the latter were to each other. Most other regions of the polyprotein differed considerably from those of all other known picornaviruses. SVV-001 contains elements of an internal ribosome entry site reminiscent of that found in hepatitis C virus and a number of genetically diverse picornaviruses. SVV-001 is a novel picornavirus and it is proposed that it be classified as the prototype species in a novel genus named 'Senecavirus'.
Human rhinoviruses (HRVs) frequently cause mild upper respiratory tract infections and more severe disease manifestations such as bronchiolitis and asthma exacerbations. HRV is classified into three species within the genus Enterovirus of the family Picornaviridae. HRV species A and B contain 75 and 25 serotypes identified by cross-neutralization assays, although the use of such assays for routine HRV typing is hampered by the large number of serotypes, replacement of virus isolation by molecular methods in HRV diagnosis and the poor or absent replication of HRV species C in cell culture. To address these problems, we propose an alternative, genotypic classification of HRV-based genetic relatedness analogous to that used for enteroviruses. Nucleotide distances between 384 complete VP1 sequences of currently assigned HRV (sero)types identified divergence thresholds of 13, 12 and 13 % for species A, B and C, respectively, that divided inter- and intra-type comparisons. These were paralleled by 10, 9.5 and 10 % thresholds in the larger dataset of >3800 VP4 region sequences. Assignments based on VP1 sequences led to minor revisions of existing type designations (such as the reclassification of serotype pairs, e.g. A8/A95 and A29/A44, as single serotypes) and the designation of new HRV types A101–106, B101–103 and C34–C51. A protocol for assignment and numbering of new HRV types using VP1 sequences and the restriction of VP4 sequence comparisons to type identification and provisional type assignments is proposed. Genotypic assignment and identification of HRV types will be of considerable value in the future investigation of type-associated differences in disease outcomes, transmission and epidemiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.