The calcium-sensing receptor (CaSR) is a G-protein-coupled receptor that has an extracellular bilobed venus flytrap domain (VFTD) predicted to contain five calcium (Ca(2+))-binding sites. To elucidate the structure-function relationships of the VFTD, we investigated 294 unrelated probands with familial hypocalciuric hypercalcaemia (FHH), neonatal severe primary hyperparathyroidism (NSHPT) or autosomal dominant hypocalcaemic hypercalciuria (ADHH) for CaSR mutations and performed in vitro functional expression studies and three-dimensional modelling of mutations involving the VFTD. A total of 70 different CaSR mutations were identified: 35 in FHH, 10 in NSHPT and 25 in ADHH patients. Furthermore, a CaSR variant (Glu250Lys) was identified in FHH and ADHH probands and demonstrated to represent a functionally neutral polymorphism. NSHPT was associated with a large proportion of truncating CaSR mutations that occurred in the homozygous or compound heterozygous state. Thirty-four VFTD missense mutations were identified, and 18 mutations were located within 10 Å of one or more of the predicted Ca(2+)-binding sites, particularly at the VFTD cleft, which is the principal site of Ca(2+) binding. Mutations of residues 173 and 221, which are located at the entrance to the VFTD cleft binding site, were associated with both receptor activation (Leu173Phe and Pro221Leu) and inactivation (Leu173Pro and Pro221Gln), thereby highlighting the importance of these residues for entry and binding of Ca(2+) by the CaSR. Thus, these studies of disease-associated CaSR mutations have further elucidated the role of the VFTD cleft region in Ca(2+) binding and the function of the CaSR.
This was defined as the appearance of secondary sexual characteristics in a normal sequence associated with early, but otherwise normal, activation of the hypothalamo-pituitary-gonadal axis. Endocrine studies revealed a dominance of LH over FSH. Stimulation with GnRH in these children resulted in a response similar to that seen in normally timed puberty. Ninety one girls presented with central precocious puberty and 85 were idiopathic. The remaining six had central precocious puberty secondary to previously diagnosed intracranial pathology (two isolated hydrocephalus, two brain tumours, one hypothalamic hamartoma, and one arachnoid cyst). Precocious puberty was not the presenting symptom of the intracranial pathology in any of the girls. Four boys presented with central precocious puberty and a cause was found in all (one brain tumour, one hypothalamic hamartoma, one after severe head trauma, and one congenital adrenal hyperplasia due to 21-hydroxylase deficiency).(B) Sexual
The immunodysregulation, polyendocrinopathy, enteropathy syndrome (IPEX), is a rare disorder of immune regulation resulting in multiple autoimmune disorders, which demonstrates X-linked recessive inheritance. The disease gene, FOXP3, was identified in 2001, and several mutations within this gene have since been described in patients with IPEX. We used linkage analysis, mutational screening of the FOXP3 gene, human leukocyte antigen typing, and analysis of X-chromosome inactivation to investigate 2 kindreds (21 subjects in total) with 4 male infants (3 now deceased) and 1 girl affected by IPEX. In 1 family a novel FOXP3 mutation was identified in the proband, with a single base deletion at codon 76 of exon 2, leading to a frameshift, which predicted a truncated protein product (108 residues vs. 431 in wild type). In the second family, the FOXP3 locus was excluded by recombination, and mutational analysis of the gene was negative. The affected girl from this family was shown to have human leukocyte antigen DR2 and DR6 alleles and random X-chromosome inactivation in peripheral blood mononuclear cells. Our analysis has elucidated the molecular basis of IPEX in one family and has, for the first time, provided evidence for an autosomal locus, suggesting genetic heterogeneity in this syndrome.
Carboxypeptidase E is a peptide processing enzyme, involved in cleaving numerous peptide precursors, including neuropeptides and hormones involved in appetite control and glucose metabolism. Exome sequencing of a morbidly obese female from a consanguineous family revealed homozygosity for a truncating mutation of the CPE gene (c.76_98del; p.E26RfsX68). Analysis detected no CPE expression in whole blood-derived RNA from the proband, consistent with nonsense-mediated decay. The morbid obesity, intellectual disability, abnormal glucose homeostasis and hypogonadotrophic hypogonadism seen in this individual recapitulates phenotypes in the previously described fat/fat and Cpe knockout mouse models, evidencing the importance of this peptide/hormone-processing enzyme in regulating body weight, metabolism, and brain and reproductive function in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.