Typically, flow volumes are visualized by defining their boundary as iso-surface of a level set function. Grid-based level sets offer a good global representation but suffer from numerical diffusion of surface detail, whereas particlebased methods preserve details more accurately but introduce the problem of unequal global representation.
The particle level set (PLS) method combines the advantages of both approaches by interchanging the information between the grid and the particles. Our work demonstrates that the PLS technique can be adapted to volumetric dye advection via streak volumes, and to the visualization by time surfaces and path volumes. We achieve this with a modified and extended PLS, including a model for dye injection. A new algorithmic interpretation of PLS is introduced to exploit the efficiency of the GPU, leading to interactive visualization. Finally, we demonstrate the high quality and usefulness of PLS flow visualization by providing quantitative results on volume preservation and by discussing typical applications of 3D flow visualization.
We present a new VR installation at the University of Siegen, Germany. It consists of a 180 • cylindrical rear-projection screen and a front-projection floor, allowing both immersive VR applications with user tracking and convincing presentations for a larger audience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.