Information on land surface properties finds applications in a range of areas related to weather forecasting, environmental research, hazard management and climate monitoring. Remotely sensed observations yield the only means of supplying land surface information with adequate time sampling and a wide spatial coverage. The aim of the Satellite Application Facility for Land Surface Analysis (Land-SAF) is to take full advantage of remotely sensed data to support land, land-atmosphere and biosphere applications, with emphasis on the development and implementation of algorithms that allow operational use of data from European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) sensors. This article provides an overview of the Land-SAF, with brief descriptions of algorithms and validation results. The set of parameters currently estimated and disseminated by the Land-SAF consists of three main groups: (i) the surface radiation budget, including albedo, land surface temperature, and downward short-and longwave fluxes; (ii) the surface water budget (snow cover and evapotranspiration); and (iii) vegetation and wild-fire parameters.
Abstract. We present an evapotranspiration (ET) model developed in the framework of the EUMETSAT "Satellite Application Facility" (SAF) on Land Surface Analysis (LSA). The model is a simplified Soil-VegetationAtmosphere Transfer (SVAT) scheme that uses as input a combination of remote sensed data and atmospheric model outputs. The inputs based on remote sensing are LSA-SAF products: the Albedo (AL), the Downwelling Surface Shortwave Flux (DSSF) and the Downwelling Surface Longwave Flux (DSLF). They are available with the spatial resolution of the MSG SEVIRI instrument. ET maps covering the whole MSG field of view are produced from the model every 30 min, in near-real-time, for all weather conditions. This paper presents the adopted methodology and a set of validation results. The model quality is evaluated in two ways. First, ET results are compared with ground observations (from CarboEurope and national weather services), for different land cover types, over a full vegetation cycle in the Northern Hemisphere in 2007. This validation shows that the model is able to reproduce the observed ET temporal evolution from the diurnal to annual time scales for the temperate climate zones: the mean bias is less than 0.02 mm h −1 and the root-mean square error is between 0.06 and 0.10 mm h −1 . Then, ET model outputs are compared with those from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Global Land Data Assimilation System (GLDAS). From this comparison, a high spatial correlation is noted, between 80 to 90%, around midday. Nevertheless, some discrepancies are also observed and are due to the different input variables and parameterisations used.
A new all-weather land surface temperature (LST) product derived at the Satellite Application Facility on Land Surface Analysis (LSA-SAF) is presented. It is the first all-weather LST product based on visible and infrared observations combining clear-sky LST retrieved from the Spinning Enhanced Visible and Infrared Imager on Meteosat Second Generation (MSG/SEVIRI) infrared (IR) measurements with LST estimated with a land surface energy balance (EB) model to fill gaps caused by clouds. The EB model solves the surface energy balance mostly using products derived at LSA-SAF. The new product is compared with in situ observations made at 3 dedicated validation stations, and with a microwave (MW)-based LST product derived from Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) measurements. The validation against in-situ LST indicates an accuracy of the new product between -0.8 K and 1.1 K and a precision between 1.0 K and 1.4 K, generally showing a better performance than the MW product. The EB model shows some limitations concerning the representation of the LST diurnal cycle. Comparisons with MW LST generally show higher LST of the new product over desert areas, and lower LST over tropical regions. Several other imagers provide suitable measurements for implementing the proposed methodology, which offers the potential to obtain a global, nearly gap-free LST product.
Abstract.Monitoring evapotranspiration over land is highly dependent on the surface state and vegetation dynamics. Data from spaceborn platforms are desirable to complement estimations from land surface models. The success of daily evapotranspiration monitoring at continental scale relies on the availability, quality and continuity of such data. The biophysical variables derived from SEVIRI on board the geostationary satellite Meteosat Second Generation (MSG) and distributed by the Satellite Application Facility on Land surface Analysis (LSA-SAF) are particularly interesting for such applications, as they aimed at providing continuous and consistent daily time series in near-real time over Africa, Europe and South America. In this paper, we compare them to monthly vegetation parameters from a database commonly used in numerical weather predictions (ECOCLIMAP-I), showing the benefits of the new daily products in detecting the spatial and temporal (seasonal and inter-annual) variability of the vegetation, especially relevant over Africa. We propose a method to handle Leaf Area Index (LAI) and Fractional Vegetation Cover (FVC) products for evapotranspiration monitoring with a land surface model at 3-5 km spatial resolution. The method is conceived to be applicable for near-real time processes at continental scale and relies on the use of a land cover map. We assess the impact of using LSA-SAF biophysical variables compared to ECOCLIMAP-I on evapotranspiration estimated by the land surface model H-TESSEL. Comparison with in-situ observations in Europe and Africa shows an improved estimation of the evapotranspiration, especially in semi-arid climates. Finally, the impact on the land surface modelled evapotranspiration is compared over a north-south transect with a large gradient of vegetation and climate in Western Africa using LSA-SAF radiation forcing derived from remote sensing. Differences are highlighted. An evaluation against remote sensing derived land surface temperature shows an improvement of the evapotranspiration simulations.
We present an evapotranspiration (ET) model developed in the framework of the EUMETSAT "Satellite Application Facility" (SAF) on Land Surface Analysis (LSA). The model is a simplified Soil-Vegetation-Atmosphere Transfer (SVAT) scheme that uses as input a combination of remote sensed data and atmospheric model outputs. The inputs based on remote sensing are LSA-SAF products: the Albedo (AL), the Downwelling Surface Shortwave Flux (DSSF) and the Downwelling Surface Longwave Flux (DSLF). They are available with the spatial resolution of the MSG SEVIRI instrument. ET maps covering the whole MSG field of view are produced by the model every 30 min, in near-real-time, for all weather conditions. This paper presents the adopted methodology and a set of validation results. The model quality is evaluated in two ways. First, ET results are compared with ground observations (from CarboEurope and national weather services), for different land cover types, over a full vegetation cycle in the Northern Hemisphere in 2007. This validation shows that the model is able to reproduce the observed ET temporal evolution from the diurnal to annual time scales for the temperate climate zones: the mean bias is less than 0.02 mm h<sup>−1</sup> and the root-mean square error is between 0.06 and 0.10 mm h<sup>−1</sup>. Then, ET model outputs are compared with those from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Global Land Data Assimilation System (GLDAS). From this comparison, a high spatial correlation is noted, between 80 to 90%, around midday time frame. Nevertheless, some discrepancies are also observed and are due to the different input variables and parameterisations used
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.